20.109(F21):M2D3

From Course Wiki
Revision as of 17:00, 2 September 2021 by Noreen Lyell (Talk | contribs)

Jump to: navigation, search
20.109(F21): Laboratory Fundamentals of Biological Engineering
Drawing provided by Marissa A., 20.109 student in Sp21 term.  Schematic generated using BioRender.

Fall 2021 schedule        FYI        Assignments        Homework        Class data        Communication        Accessibility

       Module 1: Genomic instability                          Module 2: Drug discovery       



Part 5: Electrophorese confirmation digests

Electrophoresis is a technique that separates large molecules by size using an applied electrical field and a sieving matrix. DNA, RNA and proteins are the molecules most often studied with this technique; agarose and acrylamide gels are the two most common sieves. The molecules to be separated enter the matrix through a well at one end and are pulled through the matrix when a current is applied across it. The larger molecules get entwined in the matrix and are stalled; the smaller molecules wind through the matrix more easily and travel farther away from the well. The distance a DNA fragment travels is inversely proportional to the log of its length. Over time fragments of similar length accumulate into “bands” in the gel. Higher concentrations of agarose can be used to resolve smaller DNA fragments.

Agarose gel loading and electrophoresis. (A) To separate DNA fragments after a digestion reaction, the sample is loaded into the sample slots, or wells, in the agarose. (B) Then an electrophoresis chamber is used to apply an electrical current. The result is that larger sized DNA molecules remain close to the well where the sample was loaded and smaller DNA molecules migrate through the agarose gel. This is due to the negatively charged DNA backbone and position of the electrodes in the electrophoresis chamber.

DNA and RNA are negatively charged molecules due to their phosphate backbone, and they naturally travel toward the positive electrode at the far end of the gel. Today you will separate DNA fragments using an agarose matrix. Agarose is a polymer that comes from seaweed. To prepare these gels, agarose and 1X TAE buffer (Tris base, acetic acid, and EDTA) are microwaved until the agarose is melted and fully dissolved. The molten agar is then poured into a horizontal casting tray, and a comb is added. Once the agar has solidified, the comb is removed, leaving wells into which the DNA samples can be loaded.

For the digests that were prepared in the previous laboratory session, a 1% agarose gel with SYBR Safe DNA stain was used to separate the DNA fragments in the four digest reactions. In addition, a well was loaded with a molecular weight marker (also called a DNA ladder) to determine the size of the fragments.

To ensure the steps included below are clear, please watch the video tutorial linked here: [DNA gel electrophoresis]. The steps are detailed below so you can follow along!

  1. Add 5 μL of 6x loading dye to the digests.
    • Loading dye contains bromophenol blue as a tracking dye, which enables you to follow the progress of the electrophoresis.
    • Glycerol is also included to weight the samples such that the liquid sinks into well.
  2. Flick the eppendorf tubes to mix the contents, then quick spin them in the microfuge to bring the contents of the tubes to the bottom.
  3. Load 25 μL of each digest into the gel, as well as 10 μL of 1kb DNA ladder.
    • Be sure to record the order in which you load your samples!
    • To load your samples, draw the volume listed above into the tip of your P200 or P20. Lower the tip below the surface of the buffer and directly over the well. Avoid lowering the tip too far into the well itself so as to not puncture the well. Expel your sample slowly into the well. Do not release the pipet plunger until after you have removed the tip from the gel box (or you'll draw your sample back into the tip!).
  4. Once all the samples have been loaded, attach the gel box to the power supply and electrophorese the gel at 125 V for 45 minutes.
  5. Lastly, visualize the DNA fragments in the agarose gel using the gel documentation system.