Difference between revisions of "Fall 2012: Journal Presentations"

From Course Wiki
Jump to: navigation, search
(Created page with "{{Template:20.309}} ==Presentation guidelines== Presentation time should be 10 minutes (it's very important that you do not go over this time). We will have 2-3 minutes for quest...")
 
 
(83 intermediate revisions by 27 users not shown)
Line 1: Line 1:
 +
[[Category:20.309]]
 +
[[Category:Presentations]]
 
{{Template:20.309}}
 
{{Template:20.309}}
 +
 
==Presentation guidelines==
 
==Presentation guidelines==
Presentation time should be 10 minutes (it's very important that you do not go over this time). We will have 2-3 minutes for questions and discussionIt's also important that all non-presenters read the papers carefully before the session as this will make the discussion much more interesting.
+
* The allotted time is 10 minutes plus 2-3 minutes Q&A
 +
* Provide background to motivate why the research was conducted
 +
* Describe the key results of the paper (not necessarily all of the results) and explain the measurement method in an appropriate level of detail
 +
* Explain the significance of the results to the general field.   
 +
* 10 minutes will not be nearly enough time to discuss every aspect of the paper so. Identify the most important aspects to include in your presentation.
 +
* Discuss the paper you select with 20.309 staff outside of class to address questions or thoughts you have about the paper.
 +
* Upload a Powerpoint or PDF file of your slides to [https://stellar.mit.edu/S/course/20/fa12/20.309/homework/assignment24/ Stellar] the day before you present so the session organizer can use only one computer to avoid connection problems.
 +
 
 +
<b>Non-presenters should read the papers carefully before the session to facilitate whorthwhile discussion.</b>
 
   
 
   
Your presentation should provide background to motivate why the research was conducted, describe the key results of the paper (not necessarily all of the results) and the essence of the measurement method, and explain the significance of the results to the general field.  Remember that 10 minutes will not be nearly enough time to discuss every aspect of the paper so you will need to identify the most important aspects to include in your presentation.
 
 
Make sure to upload a Powerpoint or PDF file of your presentation the day before the meeting so that we can use only one computer to avoid connection problems.
 
 
Feel free to see 20.309 staff outside of class to discuss any questions or ideas that you might have about the paper.
 
 
 
 
===Grading===
 
===Grading===
Presentation grade is worth 10% of your total grade and is divided into the following categories:<br />
+
Presentation grade is worth 8% of your total grade and is divided into the following categories:
  
 
+
* 10%: sign up for your paper by the deadline: 'Monday, Nov 19''.  To sign up, add both presenter's names after the link to the paper on this page.
* Uploading presentation file 6 hours before presentation time (25%)
+
** There are three presentation days (Dec 4, 6 and 7).  If you or your partner will be away on one of these days, indicate this by your name on the wiki page.
* Presentation – clarity, interpretation of paper, organization, etc. (50%)
+
* 25%: Uploading presentation file to Stellar 6 hours before presentation session begins and ensuring that the file works.  This is important since there will not be time to do this during the session.
* Attendance at the other two sessions (25%)
+
* 40%: Presentation – clarity, interpretation of paper, organization, adhering to the 10min time limit, ability to answer questions.
 +
* 25%: Attendance at the other two sessions
  
 
==Presentation sessions==
 
==Presentation sessions==
  
'''Thursday, December 8<br />
+
==Suggested publications==
[[Session A]] ''with Steve Wasserman in 16-336'' <br />
+
===Single cell analysis===
Alicia and Zeina:  [[http://www.openwetware.org/wiki/Image:Kaestli_Siam_Presentation.pptx.pptx download]] " The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae "<br />
+
*Mettetal et al. The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. Science 2008. [http://web.mit.edu/biophysics/papers/SCIENCE2008.pdf link] ''see also supplemental section'' '''Aislyn Schalck & Krithi Sundaram (can do either Dec 6 or Dec 7, Dec 7 is preferred)''' ; '''John Chen, Yimin Chen & Daniel Glover (only 6 Dec. works)'''
Raven and Omar: [[http://www.openwetware.org/wiki/Image:RavenOmarPresentation-3.ppt download]] "A microengraving method for rapid selection of single cells producing antigen-specific antibodies"<br />
+
*Love, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology 2006. [http://www.ncbi.nlm.nih.gov/pubmed/16699501 link] '''Sabina Sood & Shireen Rudina'''
Megan and Xinqi: [[http://www.openwetware.org/wiki/Image:journal_presentation.pptx download]] “Tumor cells caught in the act of invading: their strategy for enhanced cell motility" <br />
+
*J. Kralj, D. R. Hochbaum, A. D. Douglass, A. E. Cohen. Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011. [http://www.sciencemag.org/content/333/6040/345.full link]
 
+
*Gossett et al Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 2012. [http://www.pnas.org/content/109/20/7630.full.pdf+html link] '''Katie Vogel & Hannah Johnsen'''
[[Session B]] ''with Peter So in 4-237'' <br />
+
*Tyson et al Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nature Methods 2012. [http://www.ncbi.nlm.nih.gov/pubmed/22886092 link] '''Divya Chhabra, Mariana Duran'''
Max and Jonathan: [[http://www.openwetware.org/wiki/Image:Wu_Gootenberg_309presentation.pptx download]] " Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing "<br />
+
*Zhang et al. Microfluidics separation reveals the stem-cell–like deformability of tumor-initiating cells. PNAS 2012. [http://www.pnas.org/content/early/2012/10/25/1209893109.abstract link] '''Michael Hwang & Paul Muir''' ; '''Robin Yeo & Colin Beckwitt'''
Arvind and Samuel [[http://www.openwetware.org/wiki/Image:Arvind_Sam_309finalpresentation.ppt download]]: " The effects of molecular noise and size control on variability in the budding yeast cell cycle" <br />
+
Leanna and Brigitte: [[http://openwetware.org/images/6/60/JournalClub.pptx download]] “Isolation of rare circulating tumour cells in cancer patients by microchip technology” <br />
+
<br />
+
 
+
'''Friday, December 9'''<br />
+
[[Session A]] ''with Peter So in 16-336''<br />
+
Sachin and Yuan: [[http://www.openwetware.org/wiki/Image:Shinde_Zhao_20.309.pptx download]] “DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets” <br />
+
Nigel and Vivian: [[http://www.openwetware.org/wiki/Image:Hecht_Chou_ppt.pptx download]]“Towards single-molecule nanomechanical mass spectrometry” <br />
+
Gabi and Susana: [[http://www.openwetware.org/wiki/Image:Metastasis-1.pptx download]] [[http://openwetware.org/wiki/Image:Metastasis-1-1.pptx download]] (Please pick the 2nd download file) Gupta and Massagué. "Cancer Metastasis: Building a Framework" Cell 2006<br />
+
Anne and Jenny: "Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood"
+
<br /> [[http://openwetware.org/wiki/Image:Zhou_Ye_JCPresentation.pptx download]]
+
[[http://openwetware.org/wiki/Image:Zhou_Ye_JCPresentation.pdf download]]
+
 
+
[[Session B]]  ''with Steven Nagle in 4-231''<br />
+
Shikha and William: [[http://openwetware.org/wiki/Image:20.309FinalPres_%281%29.pptx download]]“Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein” <br />
+
Brian and Michael: [[http://openwetware.org/wiki/Image:Batista_Carvalho_Final_Presentation.pptx download]] "Geometric control of cell life and death" <br />
+
Nick and Colin: [[http://www.openwetware.org/wiki/Image:CR_NS_20309_Pres.pptx download]] “Detection of Mutations in EGFR in Circulating Lung-Cancer Cells" <br />
+
<br />
+
 
+
'''Tuesday, December 13'''<br />
+
[[Session A]]  ''with Scott Manalis in 16-336'' <br />
+
Ginger and Joseph: [[http://openwetware.org/wiki/Image:Martinez_Yang_Presentation.pptx download]] “Multidimensional Drug Profiling by Automated Microscopy" <br />
+
Tina: [[http://openwetware.org/wiki/Image:Src_activation_TS.pptx download]]“Visualizing the mechanical activation of Src"  <br />
+
Jacqueline and Manuel: [[http://openwetware.org/wiki/Image:NETRA_ML_JMS.pptx download]] “NETRA: Interactive Display for Estimating Refractive Errors and Focal Range"  <br />
+
Jessica: [[http://openwetware.org/wiki/Image:309_Presentation.pptx download]]"Folding DNA to create nanoscale shapes and patterns"
+
<br />
+
 
+
[[Session B]] ''with Steve Wasserman in 4-237''<br />
+
Sahar and Pablo: [[http://www.openwetware.org/wiki/Image:Sahar_Pablo_309_presentation.pptx download]] “Probing the kinesin reaction cycle with a 2D optical force clamp" <br />
+
PJ Velez and Pei-Ann: [[http://www.openwetware.org/wiki/Image:LinVelezBrunner.pptx download]] “Diffusion tensor spectroscopy and imaging” <br />
+
Lisa and Dana [[http://openwetware.org/wiki/Image:Braff_foo_309_presentation.pptx download]]: “Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal” <br />
+
<br />
+
  
==Single cell analysis==
+
===Biomolecular detection===
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Session1/yeast.pdf Mettetal ''et al.'', "The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae" Science 2008.] [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Session1/yeast_supp.pdf supp info] '''Alicia Kaestli and Zeina Ali Siam'''
+
*Shapiro et al. Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation JACS 2012. [http://pubs.acs.org/doi/abs/10.1021/ja211788e link] '''Alexa Schulte'''
#Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. "Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing."Nature. 2010 '''Max Wu and Jonathan Gootenberg'''
+
*Dong and Sahin. A nanomechanical interface to rapid single-molecule interactions. Nature Communications 2011. [http://www.nature.com/ncomms/journal/v2/n3/full/ncomms1246.html link]
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/singlecell/love_2006.pdf Love, ''et al.'', "A microengraving method for rapid selection of single cells producing antigen-specific antibodies" Nature Biotechnology 2006.] '''Raven Reddy and Omar Abudayyeh. Can't do Dec 6'''
+
*A. P. Fields, A. E. Cohen. Electrokinetic trapping at the one nanometer limit. PNAS 2011. [http://www.pnas.org/content/early/2011/05/09/1103554108.full.pdf+html?with-ds=yes link] '''Maxwell T Pruner'''
#J. Kralj, D. R. Hochbaum, A. D. Douglass, A. E. Cohen, Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein, Science, 333, 345-348, 2011. Shikha Kaji and William Morejon
+
*S. Husale, H. HJ. Persson, and O. Sahin. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009. [http://www.nature.com/nature/journal/v462/n7276/abs/nature08626.html link] '''Elizabeth Choe, Sneha Kannan (can only present on Dec. 4)'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/singlecell/noise_size_yeast_NATURE_2007.pdf Di Talia, ''et al.'', "The effects of molecular noise and size control on variability in the budding yeast cell cycle" Nature 2007.] '''Arvind Thiagarajan'''
+
*Hanay et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology 2012. [http://www.nature.com/nnano/journal/v7/n9/full/nnano.2012.119.html link]
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/singlecell/sorger_trail_ntr_2009.pdf Spencer, ''et al.'', "Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis" Nature 2009.]
+
  
==Metastasis and Circulating Tumor Cells==
+
===Optical Microscopy: Imaging===
#Gupta and Massagué. "Cancer Metastasis: Building a Framework" Cell 2006  Gabriella de Paz and Susana S. Hak
+
*AR. Lowe, JJ. Siegel, P. Kalab, M. Sui, K. Weis and J. Liphardt, "Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking" Nature 2010
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/metastasis/wyckoff_opinion_2005.pdf Nagrath, ''et al.'', "Tumor cells caught in the act of invading: their strategy for enhanced cell motility" TRENDS in Cell Biology 2005.]  Megan Roytman and Xinqi Li
+
*Z. E. Perlman ''et al.'', "Multidimensional Drug Profiling by Automated Microscopy," ''Science'' '''306''' pp. 1194-98 (2004) '''Laura Seaman & Shelley Ackerman'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/metastasis/toner_nature_2007.pdf Nagrath, ''et al.'', "Isolation of rare circulating tumour cells in cancer patients by microchip technology" Nature 2007.] '''-Leanna'''
+
*E. Chung, D. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," ''Opt. Lett.'' '''31'''(7) pp. 945-7 (2006). '''Nahum Seifeselassie & Gonzalo Guajardo'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/metastasis/haber_NEJM_2008.pdf Maheswaran, ''et al.'', "Detection of Mutations in EGFR in Circulating Lung-Cancer Cells" NEJM 2008.] '''Nick Swenson and Colin "Forizzle" Reisterer'''
+
*T. Ichimura ''et al.'', "Application of tip-enhanced microscopy for nonlinear Raman spectroscopy," ''Appl. Phys. Lett.'' '''84'''(10), pp. 1768-70 (2004)
 +
*T-W. Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering," ''Opt. Lett.'' '''30'''(9), pp. 1024-6 (2005)
 +
*VF Pamplona, A Mohan, MM Oliveira, R Raskar "NETRA: Interactive Display for Estimating Refractive Errors and Focal Range," Proc. of SIGGRAPH 2010 (ACM Transactions on Graphics 29, 4), 2010.
  
==Biomolecular detection==
+
===Optical Microscopy: Biomechanics===
#Fan HC, Wang J, Potanina A, Quake SR. "Whole Genome Molecular Haplotyping of Single Cells" Nature Biotechnology. 2010
+
*S. M. Block ''et al.'', "Probing the kinesin reaction cycle with a 2D optical force clamp," ''PNAS'' '''100'''(5), pp. 2351-56 (2003). '''Philip Smith'''
#Fordyce PM, Gerber D, Tran D, Zheng J, Li H5, DeRisi JL, Quake SR. "De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis"Nature Biotechnology. 2010 '''-Brigitte'''
+
*P. J. Verveer ''et al.'', "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane," ''Science'' '''290''' pp. 1567-70 (2000). '''Jessica Li & Kevin Li (can only do Dec 7th)'''
#Dong and Sahin, "A nanomechanical interface to rapid single-molecule interactions" Nature Communications 2011.
+
*S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," ''Biophys. J'' '''78'''(4), pp. 1736-47 (2000). '''Afrah Shafquat & Samira Daswani'''
#A. P. Fields, A. E. Cohen, Electrokinetic trapping at the one nanometer limit, PNAS 2011.
+
*B. Yap and R. D. Kamm, "Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels," ''J Appl. Physiol.'' '''99''', pp. 2323-30 (2005). '''Cara Brown (can do either 4th or 7th); Edgar Matias and Steven Carreno'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Session1/winfree_dna_crystals_NATURE_1998.pdf E. Winfree, ''et al.'' "Design and self-assembly of two-dimensional DNA crystals," Nature '''394'''(6693): pp. 539-544 (1998).] OR [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Session1/rothemund_DNA_shapes_NATURE_2006.pdf P. W. K. Rothemund "Folding DNA to create nanoscale shapes and patterns," Nature '''440'''(7082): pp. 297-302(2006).]
+
*J. C. Crocker ''et al.'', "Two-Point Microrheology of Inhomogeneous Soft Materials," ''Phys. Rev. Lett.'' '''85'''(4), pp. 888-91 (2000). '''Elizabeth Rowland and Stephanie Fung'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Session1/heath_NTR_BIO_2009.pdf Fan ''et al.'' "Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood," Nature Biotechnology 2008.] '''Jenny Zhou and Anne Ye''' (Date preference: December 6, 9, 8)
+
*C. S. Chen ''et al.'', "Geometric control of cell life and death," ''Science'' '''276''' pp. 1425-28 (1997). '''Anirudh Arun, Shirley Galbiati'''; '''Divya Chhabra, Mariana Duran'''
#S. Husale, H. HJ. Persson, and O. Sahin, “DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets” Nature 2009.'''Sachin Shinde and Yuan Zhao'''
+
*Y. Wang ''et al.'', "Visualizing the mechanical activation of Src," ''Nature'' '''434''', pp. 1040-45 (2005). '''Jamal Elkhader and Queenie Chan; Lauren Berry'''
#Appleyard et al. "Multiplexed Protein Quantification with Barcoded Hydrogel Microparticles" Analytical Chemistry 2011.
+
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Session1/roukes_mass_spec_2009.pdf Naik ''et al.'' "Towards single-molecule nanomechanical mass spectrometry," Nature Nanotechnology 2009.]'''Nigel Chou and Vivian Hecht'''
+
  
==Optical Microscopy: Imaging==
+
===3D Imaging===
#AR. Lowe, JJ. Siegel, P. Kalab, M. Sui, K. Weis and J. Liphardt, "Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking" Nature 2010
+
*D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," ''Traffic '' '''2''' pp. 764-774 (2001).
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/perlman_science2004.pdf Z. E. Perlman ''et al.'', "Multidimensional Drug Profiling by Automated Microscopy," ''Science'' '''306''' pp. 1194-98 (2004).] '''Joseph Martinez and Jingkun (Ginger) Yang (Can't do 12/6)'''
+
*JM. Walter, ''et al.'', "Light-powering Escherichia coli with proteorhodopsin" ''Proceedings of the National Academy of Sciences'' '''104''', pp. 2408–2412 (2007).
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/chung_OL2006.pdf E. Chung, D. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," ''Opt. Lett.'' '''31'''(7) pp. 945-7 (2006).]
+
*M. J. Miller ''et al.'', "Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node," ''Science'' '''296''' pp. 1869-73 (2002). '''Emily Brown, Meghan Nelson'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/ichimura_apl2004.pdf T. Ichimura ''et al.'', "Application of tip-enhanced microscopy for nonlinear Raman spectroscopy," ''Appl. Phys. Lett.'' '''84'''(10), pp. 1768-70 (2004).]
+
*H. Wang ''et al.'', "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," ''Biophys. J'' '''89'''(1), pp. 581-91 (2005).
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/koo_OL2005.pdf T-W. Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering," ''Opt. Lett.'' '''30'''(9), pp. 1024-6 (2005).]
+
* K. M. Hanson ''et al.'', "Two-Photon Fluorescence Lifetime Imaging of the Skin Stratum Corneum pH Gradient" ''Biophys. J'' '''83'''(3) pp. 1682-90 (2002).'''Cuong Nguyen'''
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/zhuang_storm.pdf M. J. Rust, M. Bates, X. Zhuang, "Sub-diffraction-limit imaging by stochastic reconstruction optical microscopy (STORM)," Nature Methods 3:793-795 (2006).]
+
*P. J. Campagnola ''et al.'', "Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues," ''Biophys. J'' '''81'''(1) pp. 493-508 (2002).
# Design of Fluorescence Wide Field Microscopy
+
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/NETRA_Paper_309.pdf VF Pamplona, A Mohan, MM Oliveira, R Raskar "NETRA: Interactive Display for Estimating Refractive Errors and Focal Range," Proc. of SIGGRAPH 2010 (ACM Transactions on Graphics 29, 4), 2010.] '''Jacqueline Söegaard and Manuel Legrand''' [[http://www.openwetware.org/wiki/Image:NETRA_Presentation_ML_JMS_2.pptx download]]
+
  
==Optical Microscopy: Biomechanics==
+
===Superresolution microscopy===
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/block_PNAS2003.pdf S. M. Block ''et al.'', "Probing the kinesin reaction cycle with a 2D optical force clamp," ''PNAS'' '''100'''(5), pp. 2351-56 (2003).]'''Sahar Alkhairy, Pablo'''
+
*M. J. Rust, M. Bates, X. Zhuang, "Sub-diffraction-limit imaging by stochastic reconstruction optical microscopy (STORM)," Nature Methods 3:793-795 (2006).
 +
* [http://www.sciencemag.org/content/337/6091/236 Molecular Architecture and Assembly Principles of Vibrio cholerae Biofilms] Berk, et. al. cience 13 July 2012: Vol. 337 no. 6091 pp. 236-239 DOI: 10.1126/science.1222981
 +
* [http://www.nature.com/nmeth/journal/v9/n10/full/nmeth.2179.html Aptamers as potential tools for super-resolution microscopy]. Opazo, et. al. Nature Methods 9, 938–939 (2012) doi:10.1038/nmeth.2179
 +
* [http://www.nature.com/nmeth/journal/v9/n8/full/nmeth.2077.html Scanning angle interference microscopy reveals cell dynamics at the nanoscale] Paszek, et. al. Nature Methods 9, 825–827 (2012) doi:10.1038/nmeth.2077
  
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/verveer_science2000.pdf P. J. Verveer ''et al.'', "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane," ''Science'' '''290''' pp. 1567-70 (2000).]
+
===Optical manipulation (laser tweezers)===
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/yamada_bj2000.pdf S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," ''Biophys. J'' '''78'''(4), pp. 1736-47 (2000).]
+
*[http://www.nature.com/nmeth/journal/v9/n10/full/nmeth.2152.html Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke] Capitanio, et. al. [http://www.nature.com/nmeth/index.html Nature Methods] 9, 1013–1019 (2012) doi:10.1038/nmeth.2152  '''Asmamaw Wassie, Prashant Patil'''
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/yap_JAP2005.pdf B. Yap and R. D. Kamm, "Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels," ''J Appl. Physiol.'' '''99''', pp. 2323-30 (2005).] '''Samuel Acquah'''
+
*[http://www.biophysj.org/cgi/reprint/81/2/767 The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Guck, et. al]
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/crocker_PRL2000.pdf J. C. Crocker ''et al.'', "Two-Point Microrheology of Inhomogeneous Soft Materials," ''Phys. Rev. Lett.'' '''85'''(4), pp. 888-91 (2000).]
+
*[http://stacks.iop.org/JOptA/9/S103 Brau, R.R., ''et al.,'' "Passive and active microrheology with optical tweezers." ''Journal of Optics A: Pure and Applied Optics'' '''9''', pp. S103-S112 (2007).]
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/chen_science1997.pdf C. S. Chen ''et al.'', "Geometric control of cell life and death," ''Science'' '''276''' pp. 1425-28 (1997).] '''Brian Carvalho + Michael Batista'''
+
*[http://www.pnas.org/cgi/reprint/0611180104v1 Muller cells are living optical fibers in the vertebrate retina, Franze, et. al]
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/wang_nature2005.pdf Y. Wang ''et al.'', "Visualizing the mechanical activation of Src," ''Nature'' '''434''', pp. 1040-45 (2005).] '''Tina Stutzman, Can't do Dec. 8th '''
+
*[http://www.pnas.org/content/104/12/4892.full.pdf Khalil, A.S., ''et al.'', "Single M13 bacteriophage tethering and stretching." ''Proceedings of the National Academy of Sciences'' '''104''', pp. 4892-4897 (2007).]
 +
*[http://www.physics.berkeley.edu/research/liphardt/pdfs/probe.pdf Y. Nakayama, ''et al.'', "Tunable nanowire nonlinear optical probe." ''Nature'' '''447''', pp. 1098-1101 (2007).]
  
==Optical Trapping and 3D Imaging==
+
===Magnetic Resonance Imaging and Contrast===
#[http://www.pnas.org/content/104/12/4892.full.pdf Khalil, A.S., ''et al.'', "Single M13 bacteriophage tethering and stretching." ''Proceedings of the National Academy of Sciences'' '''104''', pp. 4892-4897 (2007).] - Pablo
+
*[http://www.sciencedirect.com/science/article/pii/S0006349594807751 Basser PJ, Mattiello J, LeBihan D, “Diffusion tensor spectroscopy and imaging,” Biophys J 1994.]
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/axelrod_traffic2002.pdf D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," ''Traffic '' '''2''' pp. 764-774 (2001).]
+
*[http://www.nature.com/nature/journal/v457/n7232/full/nature07752.html Brunner et al, “Travelling-wave nuclear magnetic resonance,” Nature 2009.]  
#[http://stacks.iop.org/JOptA/9/S103 Brau, R.R., ''et al.,'' "Passive and active microrheology with optical tweezers." ''Journal of Optics A: Pure and Applied Optics'' '''9''', pp. S103-S112 (2007).]
+
*[http://europepmc.org/abstract/MED/1006309/reload=0;jsessionid=37rBV5PKyycryJLgEsEz.0 Damadian R et al, “Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal,” Science 1976.]  
#[http://www.physics.berkeley.edu/research/liphardt/pdfs/probe.pdf Y. Nakayama, ''et al.'', "Tunable nanowire nonlinear optical probe."  ''Nature'' '''447''', pp. 1098-1101 (2007).]
+
*[http://www.nature.com/nature/journal/v435/n7046/abs/nature03808.html Gleich B & Weizenecker J, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature 2005.]
#[http://www.physics.berkeley.edu/research/liphardt/pdfs/EColi.pdf JM. Walter, ''et al.'', "Light-powering Escherichia coli with proteorhodopsin" ''Proceedings of the National Academy of Sciences'' '''104''', pp. 2408–2412 (2007).]  
+
*[http://www.pnas.org/content/87/24/9868.short Ogawa S et al, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc Natl Acad Sci USA 1990.]  
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/miller_science2002.pdf M. J. Miller ''et al.'', "Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node," ''Science'' '''296''' pp. 1869-73 (2002).]
+
*[http://www.nature.com/nature/journal/v430/n6997/abs/nature02658.html Rugar D et al, “Single spin detection by magnetic resonance force microscopy,” Nature 2004.]
#[http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/wang_bj2005.pdf H. Wang ''et al.'', "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," ''Biophys. J'' '''89'''(1), pp. 581-91 (2005).]
+
*[http://www.nature.com/nm/journal/v9/n8/abs/nm907.html Zhou J et al, “Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI,” Nat Med.]
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/hanson_BJ2002.pdf K. M. Hanson ''et al.'', "Two-Photon Fluorescence Lifetime Imaging of the Skin Stratum Corneum pH Gradient" ''Biophys. J'' '''83'''(3) pp. 1682-90 (2002).]
+
# [http://www.media.mit.edu/nanoscale/courses/BE309/private/Presentations/Sessions345/campagnola_BJ2002.pdf P. J. Campagnola ''et al.'', "Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues," ''Biophys. J'' '''81'''(1) pp. 493-508 (2002).]
+
#[http://www.pnas.org/cgi/reprint/0611180104v1 Muller cells are living optical fibers in the vertebrate retina, Franze, et. al]
+
#[http://www.biophysj.org/cgi/reprint/81/2/767 The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Guck, et. al]
+
  
==Magnetic Resonance Imaging and Contrast==
+
===Molecular Imaging with MRI===
#[http://www.ncbi.nlm.nih.gov/pubmed/8130344 Basser PJ, Mattiello J, LeBihan D, “Diffusion tensor spectroscopy and imaging,” Biophys J 1994.]
+
*[http://www.nature.com/nbt/journal/v23/n8/abs/nbt1121.html Ahrens ET et al, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat Biotechnol 2005.] '''Paula Trepman & Tonia Tsinman (Dec 7 only); Holly Chamberlain and Nina Jreige'''
#[http://www.ncbi.nlm.nih.gov/pubmed/19225521 Brunner et al, “Travelling-wave nuclear magnetic resonance,” Nature 2009.] '''PJ Velez and Pei-Ann Lin'''
+
*[http://www.pnas.org/content/100/18/10158.short Ardenkjaer-Larsen JH et al, “Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR,” Proc Natl Acad Sci USA 2003.]
#[http://www.ncbi.nlm.nih.gov/pubmed/1006309 Damadian R et al, “Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal,” Science 1976.] '''Lisa Foo and Dana Braff'''
+
*[http://www.nature.com/nm/journal/v13/n4/full/nm1497.html Cohen B et al, “MRI detection of transcriptional regulation of gene expression in transgenic mice,” Nat Med 2007.] '''Brian Joseph, Luis A. Juárez'''
#[http://www.ncbi.nlm.nih.gov/pubmed/15988521 Gleich B & Weizenecker J, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature 2005.]
+
*[http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910380305/abstract Lin YJ & Koretsky AP, “Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function,” Magn Reson Med 1997.]
#[http://www.ncbi.nlm.nih.gov/pubmed/2124706 Ogawa S et al, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc Natl Acad Sci USA 1990.]  
+
*[http://www.contrib.andrew.cmu.edu/~hongyanx/web%20page%20materials/nbt0300_321.pdf Louie AY et al, “In vivo visualization of gene expression using magnetic resonance imaging,” Nat Biotechnol 2000.]
#[http://www.ncbi.nlm.nih.gov/pubmed/15254532 Rugar D et al, “Single spin detection by magnetic resonance force microscopy,” Nature 2004.]
+
*[http://www.nature.com/neuro/journal/v8/n4/full/nn1422.html Higuchi M et al, “19F and 1H MRI detection of amyloid beta plaques in vivo,” Nat Neurosci 2005.] '''Ryan Keating & Carlos Castellanos'''
#[http://www.ncbi.nlm.nih.gov/pubmed/12872167 Zhou J et al, “Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI,” Nat Med.]
+
  
==Molecular Imaging with MRI==
+
===Electron microscopy===
#[http://www.ncbi.nlm.nih.gov/pubmed/16041364 Ahrens ET et al, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat Biotechnol 2005.]
+
[http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.2375.html Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy] Martell, et. al. Nature Biotechnology (2012) doi:10.1038/nbt.2375 '''Grant Robinson'''
#[http://www.ncbi.nlm.nih.gov/pubmed/12930897 Ardenkjaer-Larsen JH et al, “Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR,” Proc Natl Acad Sci USA 2003.]
+
#[http://www.ncbi.nlm.nih.gov/pubmed/17351627 Cohen B et al, “MRI detection of transcriptional regulation of gene expression in transgenic mice,” Nat Med 2007.] Derek Ju and John Kucharczyk
+
#[http://www.ncbi.nlm.nih.gov/pubmed/9339438 Lin YJ & Koretsky AP, “Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function,” Magn Reson Med 1997.]
+
#[http://www.ncbi.nlm.nih.gov/pubmed/10700150 Louie AY et al, “In vivo visualization of gene expression using magnetic resonance imaging,” Nat Biotechnol 2000.]
+
#[http://www.ncbi.nlm.nih.gov/pubmed/15768036 Higuchi M et al, “19F and 1H MRI detection of amyloid beta plaques in vivo,” Nat Neurosci 2005.]
+
  
 
{{Template:20.309 bottom}}
 
{{Template:20.309 bottom}}

Latest revision as of 17:53, 3 December 2012

20.309: Biological Instrumentation and Measurement

ImageBar 774.jpg


Presentation guidelines

  • The allotted time is 10 minutes plus 2-3 minutes Q&A
  • Provide background to motivate why the research was conducted
  • Describe the key results of the paper (not necessarily all of the results) and explain the measurement method in an appropriate level of detail
  • Explain the significance of the results to the general field.
  • 10 minutes will not be nearly enough time to discuss every aspect of the paper so. Identify the most important aspects to include in your presentation.
  • Discuss the paper you select with 20.309 staff outside of class to address questions or thoughts you have about the paper.
  • Upload a Powerpoint or PDF file of your slides to Stellar the day before you present so the session organizer can use only one computer to avoid connection problems.

Non-presenters should read the papers carefully before the session to facilitate whorthwhile discussion.

Grading

Presentation grade is worth 8% of your total grade and is divided into the following categories:

  • 10%: sign up for your paper by the deadline: 'Monday, Nov 19. To sign up, add both presenter's names after the link to the paper on this page.
    • There are three presentation days (Dec 4, 6 and 7). If you or your partner will be away on one of these days, indicate this by your name on the wiki page.
  • 25%: Uploading presentation file to Stellar 6 hours before presentation session begins and ensuring that the file works. This is important since there will not be time to do this during the session.
  • 40%: Presentation – clarity, interpretation of paper, organization, adhering to the 10min time limit, ability to answer questions.
  • 25%: Attendance at the other two sessions

Presentation sessions

Suggested publications

Single cell analysis

  • Mettetal et al. The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. Science 2008. link see also supplemental section Aislyn Schalck & Krithi Sundaram (can do either Dec 6 or Dec 7, Dec 7 is preferred) ; John Chen, Yimin Chen & Daniel Glover (only 6 Dec. works)
  • Love, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology 2006. link Sabina Sood & Shireen Rudina
  • J. Kralj, D. R. Hochbaum, A. D. Douglass, A. E. Cohen. Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011. link
  • Gossett et al Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 2012. link Katie Vogel & Hannah Johnsen
  • Tyson et al Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nature Methods 2012. link Divya Chhabra, Mariana Duran
  • Zhang et al. Microfluidics separation reveals the stem-cell–like deformability of tumor-initiating cells. PNAS 2012. link Michael Hwang & Paul Muir ; Robin Yeo & Colin Beckwitt

Biomolecular detection

  • Shapiro et al. Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation JACS 2012. link Alexa Schulte
  • Dong and Sahin. A nanomechanical interface to rapid single-molecule interactions. Nature Communications 2011. link
  • A. P. Fields, A. E. Cohen. Electrokinetic trapping at the one nanometer limit. PNAS 2011. link Maxwell T Pruner
  • S. Husale, H. HJ. Persson, and O. Sahin. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009. link Elizabeth Choe, Sneha Kannan (can only present on Dec. 4)
  • Hanay et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology 2012. link

Optical Microscopy: Imaging

  • AR. Lowe, JJ. Siegel, P. Kalab, M. Sui, K. Weis and J. Liphardt, "Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking" Nature 2010
  • Z. E. Perlman et al., "Multidimensional Drug Profiling by Automated Microscopy," Science 306 pp. 1194-98 (2004) Laura Seaman & Shelley Ackerman
  • E. Chung, D. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," Opt. Lett. 31(7) pp. 945-7 (2006). Nahum Seifeselassie & Gonzalo Guajardo
  • T. Ichimura et al., "Application of tip-enhanced microscopy for nonlinear Raman spectroscopy," Appl. Phys. Lett. 84(10), pp. 1768-70 (2004)
  • T-W. Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering," Opt. Lett. 30(9), pp. 1024-6 (2005)
  • VF Pamplona, A Mohan, MM Oliveira, R Raskar "NETRA: Interactive Display for Estimating Refractive Errors and Focal Range," Proc. of SIGGRAPH 2010 (ACM Transactions on Graphics 29, 4), 2010.

Optical Microscopy: Biomechanics

  • S. M. Block et al., "Probing the kinesin reaction cycle with a 2D optical force clamp," PNAS 100(5), pp. 2351-56 (2003). Philip Smith
  • P. J. Verveer et al., "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane," Science 290 pp. 1567-70 (2000). Jessica Li & Kevin Li (can only do Dec 7th)
  • S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," Biophys. J 78(4), pp. 1736-47 (2000). Afrah Shafquat & Samira Daswani
  • B. Yap and R. D. Kamm, "Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels," J Appl. Physiol. 99, pp. 2323-30 (2005). Cara Brown (can do either 4th or 7th); Edgar Matias and Steven Carreno
  • J. C. Crocker et al., "Two-Point Microrheology of Inhomogeneous Soft Materials," Phys. Rev. Lett. 85(4), pp. 888-91 (2000). Elizabeth Rowland and Stephanie Fung
  • C. S. Chen et al., "Geometric control of cell life and death," Science 276 pp. 1425-28 (1997). Anirudh Arun, Shirley Galbiati; Divya Chhabra, Mariana Duran
  • Y. Wang et al., "Visualizing the mechanical activation of Src," Nature 434, pp. 1040-45 (2005). Jamal Elkhader and Queenie Chan; Lauren Berry

3D Imaging

  • D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic 2 pp. 764-774 (2001).
  • JM. Walter, et al., "Light-powering Escherichia coli with proteorhodopsin" Proceedings of the National Academy of Sciences 104, pp. 2408–2412 (2007).
  • M. J. Miller et al., "Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node," Science 296 pp. 1869-73 (2002). Emily Brown, Meghan Nelson
  • H. Wang et al., "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," Biophys. J 89(1), pp. 581-91 (2005).
  • K. M. Hanson et al., "Two-Photon Fluorescence Lifetime Imaging of the Skin Stratum Corneum pH Gradient" Biophys. J 83(3) pp. 1682-90 (2002).Cuong Nguyen
  • P. J. Campagnola et al., "Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues," Biophys. J 81(1) pp. 493-508 (2002).

Superresolution microscopy

Optical manipulation (laser tweezers)

Magnetic Resonance Imaging and Contrast

Molecular Imaging with MRI

Electron microscopy

Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy Martell, et. al. Nature Biotechnology (2012) doi:10.1038/nbt.2375 Grant Robinson