
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Saccharomyces Cenome Deletion Project \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Techniques for phenotyping yeast

Spot Test analysis. Equal numbers of wild type or mutant yeast cells were spotted on media with or without $400 \mathrm{ug} / \mathrm{m}$ of cobalt The re ug / m of cobalt. The relative number of yeast cells spotted on the plates are indicated. In relation to wild type, the mutant strain did not produce as many colonies in the presence of cobalt. This suggests sensitivity to cobalt for the mutant cells. to cobalt for the mutant cells. W / T is the wild type (normal)
strain; Mut is the gene deletion mutant strain for the rox1 gene.

Protein Purification: why bother... \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Protein Purification: where to begin?

Best starting sources are
cheap

readily available
enriched for protein of interest \qquad
To follow purification: nice to have an assay that is
cheap
readily available
specific for protein of interest
SDS-PAGE can be used to determine how pure but not how functional

Physical properties enable fractionation

These properties can be exploited to separate individual protein from mixture

Alberts "Essential Cell Biology"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

