M1D1: Learn best practices for mammalian cell culture

- 1. Orientation Quiz
- 2. Prelab discussion
- 3. Learn about cell culture in the lab

Mod 1: Major Assignments

- Data summary (15%)
 - In a team
 - Draft due 10/4, final revision due 10/14
 - Format: Bullet points, .PPTX
- Mini-presentation (5%)
 - Individual, submit video via gmail
 - Due 10/11 by 10pm
- Lab quizzes (5% collectively)
 - Individual (orientation quiz is exception)
 - Due 10pm day of lab, submit on Stellar
- Notebook (5% collectively)
 - Due 9/25 at 10pm, graded by Aimee
- Blog (part of 5% Participation)
 - Due 10/5 at 10pm

Overview of Module 1: Measuring Genomic Instability

Quantify DNA damage in mammalian cells following exposure to hydrogen peroxide and arsenite

Examine effect of H_2O_2 +/- As on double strand DNA breaks by measuring $\gamma H2AX$ foci formation

- Immunofluorescence (IF)
 - Cells attached to glass coverslips
- Cellular response to DNA damage

Measure the effects of H_2O_2 +/- As on DNA damage by measuring DNA migration in agarose matrix

- CometChip assay
 - single cell gel electrophoresis in 96 well format
- Single strand DNA breaks

Tissue culture sterile technique

- 70% ethanol everything:
 - Wipe cabinet before and after use
 - Wipe everything that enters the cabinet
 - Do not spray cells with EtOH
- Do not disturb air flow:
 - Do not block grille or slots
 - Minimize side-to-side arm movements
 - Work > 6" away from sash
 - Leave blower on always
- Do not talk into incubator!
- Only open sterile media in hood

Mammalian Cell Culture Medium

Food:

We are using ____ cells

- RPMI 1640 (Roswell Park Memorial Institute)
 - Defined

- FBS (fetal bovine serum)
 - Undefined

Non-food:

- antibiotics:
 - penicillin
 - streptomycin

Mammalian Cell Culture Terminology

Confluence

Splitting

Seeding

Low Density

High Density

Counting cells

Hemocytometer

Trypan blue

cells / mL = 10,000 x average of 4 corners

Upcoming assignments: What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Missing
te of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
pothesis or goal / purpose	2	1	0
otocols (link to appropriate wiki sections)	1	0.5	0
swering questions embedded in wiki sections	5	3	0
servations from demonstrations and video tutorials	3	2	0
isual details			
ualitative information			
aw data			
ta analysis	3	2	0
alculations			
raphs and Tables			
mmary and interpretation of data	3	2	0
hat did you learn?			
ow does this information fit into the larger scope of the project	t?		
formation is clear	2	1	0
l days represented	5	3	0
l days represented	5		3

Due 10pm after each module, as posted on wiki

http://engineerbiology.org/wiki/20.109(F20):_Assignments

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb_FKBP12 in silico

- Include all work / notes / images / sequences generated.
- Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes.
- Include calculations.
- · Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(F20)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with the instructors and Aimee (if you have not already)
 - · Right-click and choose 'settings'
 - Add collaborators by email address
 - amoise@mit.edu
 - rcmeyer@mit.edu
 - mebane@mit.edu
 - nllyell@mit.edu

For today:

- 1. Complete Orientation quiz with lab partner
- 2. Work through wiki to learn cell culture protocol
 - 1. Be sure to keep notes in Benchling!

For M1D2:

Create a template for your Benchling notebook and use it to create a M1D2 entry

** Make sure you have shared your notebook with me!