Welcome to 20.109

Laboratory Fundamentals of Biological Engineering

FI3 Orientation Lecture, 9/5/13

The start of an MIT semester:

Internet usage over 24 hours

http://internetcensus2012.bitbucket.org/images/geovideo.gif

Wednesday, September 4, 13

How do you do it?

Kilograms of coffee per person per year....

http://chartsbin.com/view/581

How do you do it?

Kilograms of coffee per person per year....

Laboratory Fundamentals of Biological Engineering

- *****Teaching Team
- *Core 20.109 Mission

Building a better bioengineer. What's in it for you?

*Modular Structure of Course

Module 1: DNA Engineering Module 2: Systems Engineering Module 3: Biomaterials Engineering

*****Logistics

Everything you really want to know -- today

20.109 Instruction Team

Technical

Bevin Engelward (Mod I) Shannon Hughes (Mod 2,T/R) Angie Belcher (Mod 3) Agi Stachowiak (W/F) Aneesh Ramaswamy (T/R)

Communications

Leslie Ann Roldan (Writing) Atissa Banuazizi (Oral Presentations)

Teaching Assistants

Module 1: Lizzie Ngo Module 2: Kim Davis Module 3: Griffin Clausen

20.109 Core Mission

*To prepare students to be the <u>future</u> of Biological Engineering

*****To teach cutting edge research skill and technology through an <u>authentic research</u> experience

*To inspire <u>rigorous data analysis</u> and its <u>thoughtful</u> <u>communication</u>

20.109's Standard Workflow

We start here

But, you can't design an experiment if you haven't 'analyzed' some data!

20.109: Design

We aim to prevent "just follow the protocol" syndrome.

Image credit: <u>www.tasss.com</u>

Wednesday, September 4, 13

20.109: Design

We aim to prevent "just follow the protocol" syndrome.

20.109: Experiment

BRET: Bioluminescence Resonance Energy Transfer

We will do <u>relevant and</u> <u>cutting edge</u> experiments.

Image credits: http://nfcr.lanl.gov/index.htm Proc Natl Acad Sci U S A. 2006 August 8; 103(32): 11862–11867. Hamden, CP. Neuroscience 2006,

Wednesday, September 4, 13

20.109: Experiment

We will do <u>relevant and cutting edge</u> experiments.

And we do it safely:

http://blogs.discovermagazine.com/bodyhorrors/2013/03/20/mouth_pipetting/#.Uh-277x56TJ

20.109:Analyze

Step one: What are the data?

X Title	Data Set-A												
×	A:Y1	A:Y2	A:Y3	A:Y4	A:Y5	A:Y6	A:Y7	A:Y8	A:Y9	A:Y10	A:Y11	A:Y12	A:Y13
0.001	1.000000	1.000000	0.848243	1.000000	0.713133	0.950588	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
0.010	0.806115	0.880406	1.000000	0.973925	1.000000	1.000000	0.894219	0.919256	0.931213	0.921518	0.972005	0.849801	0.918947
0.050	0.548535	0.735558	0.708449	0.779236	0.539573	0.641501	0.596857	0.594858	0.637694	0.598490	0.760630	0.674994	0.655455
0.100	0.502015	0.613624	0.338126	0.648407	0.347801	0.439509	0.364033	0.389130	0.438887	0.410905	0.665287	0.573336	0.425153
0.200	0.257326	0.357331	0.282499	0.605311	0.150865	0.255431	0.196695	0.242768	0.280211	0.259752	0.429967	0.357416	0.222382
0.300	0.152803	0.217029	0.210579	0.518589	0.237044	0.263803	0.123727	0.120837	0.174456	0.179095	0.155648	0.264536	0.194816
0.400	0.177765	0.083181	0.067909	0.459838	0.105253	0.129052	0.078437	0.064896	0.116523	0.113035	0.216040	0.099032	0.122746
0.600	0.071051	0.000753	0.045545	0.422433	0.018956	0.041174	0.030107	0.022286	0.050173	0.064494	0.035743	0.066997	0.055030
0.800	0.024218	0.000000	0.020483	0.411027	0.020630	0.000000	0.016070	0.019293	0.022485	0.000000	0.051325	0.000000	0.046801
1.000	0.026194	0.098671	0.015087	0.000910	0.093265	0.098757	0.000000	0.000000	0.000000	0.013153	0.054582	0.060170	0.077899
2.500	0.004186	0.094503	0.000000	0.000000	0.026212	0.043179	0.047481	0.028909	0.004165	0.009882	0.038296	0.074874	0.066173
10.000	0.000000	0.059246	0.059780	0.012342	0.000000	0.002607	0.040768	0.006809	0.007207	0.016250	0.000000	0.022207	0.000000

20.109: Analyze

Step one: What are the data?

Step two: What are the data telling you?

http://farm2.static.flickr.com/1159/526560734_3c3ecebb08_o.gif

20.109: Communicate

Time after EGF addition (min)

Tell your story!

20.109: Design

We aim to prevent "just follow the protocol" syndrome.

20.109:The Plan

20.109(F13): Laboratory Fundamentals of Biological Engineering

openwetware.org/wiki/20.109(FI3)

DNA Engineering: Module |

Lab Skills:

Retrieve and manipulate sequences from databases

Clone PCR-amplified DNA fragments

Transfection of mammalian cells & Flow Cytometry

Systems Engineering: Module 2

Lab Skills:

Experiments:

* Choose a cell phenotype of interest and quantify the underlying intracellular signaling network activation.

* Compare low and highthroughput experimental paradigms for studying cell signaling.

Critical evaluation of literature to choose experiments of interest Protein biochemistry -- cell stimulation, lysis and Western blotting BRET-based high throughput screen

Wednesday, September 4, 13

Biomaterial Engineering: Module 3

M13 nanowires TEM image of gold nanowires from Youjin Lee

Lab Skills:

Bacteriophage MI3 material production

Fabrication of bio-based devices

Parameter variation: effect of SWNT vs. gold at different ratios

Experiments:

- * Mineralize phage surface with gold or SWNT
- * TEM to visualize structure
- * Assemble and test solar cells

Course Logistics

Lectures:

- * Tues/Thurs -- 11-12pm in 16-220
- * Prof. Engelward --> me --> Prof. Belcher (corresponds to module)

Lab:

- * Tues/Thurs -- I-5pm in 56-322 (Aneesh & Shannon)
- * Wed/Fri -- I-5pm in 56-322 (Agi)
- ***** There are no^{*} make-up labs.

Important details:

- * You will work in pairs in the lab.
- * Collaboration with integrity is key.

Written and oral scientific communication

Module	Topic	Assignment	% of Final Grade
	DNA	Abstract & data summary	15
	Engineering	Methods section	5
2	System	Research article	25
2	Engineering	Journal club presentation	10
3	Biomaterial	Research idea presentation	20
	Engineering	Mini report	5

Remaining 20% comes from daily work and participation.

Written and oral scientific communication

We are not abandoning you to the unknown...

(1) Writing across the curriculum instructors:

***Leslie Ann Roldan**

Lectures/discussions in class Written feedback on drafts Office hours by appointment

* Atissa Banuazizi

Lectures/discussions in class

One-on-one review of videotaped talk

(2) BE Writing Lab:

* Writing fellows available to provide peer coaching (and assigned to you!)

(3) 20.109 instructors:

* Extensive feedback on drafts -- chances to revise major reports

Written and oral scientific communication

- Stories help us remember
 - Archimedes, Newton, Kekulé
- You discover the narrative that the data tell
- Then convince an audience of your findings
 - logical structure
 - step-by-step explanations
 - repetition of central ideas
 - clear, effective visuals
 - ethical choices

Your data should be true even if your story is wrong

~ Darcy Kelley, Columbia (from The Canon, N. Angier)

Slide from Agi Stachowiak

Expectations

Some of your expectations of us

- that we will come to class and lab prepared
- that our assignments are clear and reasonable
- that we will treat every 109er with respect
- that we will give everyone equal chance at success

Some of our expectations of you

- that you will come to class and lab prepared
- that you will not interfere with each other's learning
 - that you will invest the very best of yourself
 - that you will offer honest and frequent feedback

After 20.109, you will be able to:

- Organize a constructive lab notebook
- Implement lab protocols & troubleshoot
- Design novel experiments with appropriate controls
- Interpret qualitative data
- Analyze quantitative data
- Recognize the utility of mathematical models
- Critically examine the scientific literature
- Communicate your science through writing and oral presentation
- Work as a team and provide constructive and helpful feedback and aid to other engineers/scientists

... The future of biological engineering.

