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Key Experimental Methods for
Module 1

* Mammalian tissue cell culture

* Monitoring protein level by Western blot
* Generating plasmids with DNA damage
* Transfecting plasmids into mammalian cells

 Using fluorescent proteins as reporters of
biological processes

* Flow cytometry to measure DNA repair

o Statistical analysis of biological data



What experimental question will you ask in
Module 27

How efficiently does DNA repair by the Non
Homologous End Joining (NHEJ) pathway act
on DNA damage with different topologies?

This raises the following questions

 How does DNA get damaged?

* What is DNA repair?

* Why does DNA repair exist?

 Why do we care about how efficient DNA repair is?

« How will we actually measure DNA repair efficiency?



The Structure of DNA
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DNA is constantly being damaged by
endogenous and exogenous agents

Sunlight Radiation Inflammation

Cigarette Pollution & Oxidative
Smoke Food Radicals

Courtesy of Bevin Engelward



In the time it takes to read this
sentence your cells will have

accumulated about 10 trillion DNA
lesions throughout your body!

Assumptions:
20,000 lesions per cell per day
1013 cell in the human body
4 seconds to read the sentence
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Damage to DNA can lead to
permanent changes in the
genetic information
(mutations)
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Some cancer Chemotherapy agents and all Radiotherapies
CAUSE DNA DAMAGE




Environmental exposures to potentially
harmful agents — DNA damaging agents

Harmful agents

People have different
exposures

responses




2007 - Breakthrough of the year
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Natural sequence
variation

single nucleotide
polymorphisms
(SNPs) every 1000
base pairs.
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Toxic agents in our environment
Gene-Environment Interaction

Time/Age/Behavior



Six Major DNA Repair Pathways

Single-strand break
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What are the known risk factors for
Skin Cancer?



What are the known risk factors for
Skin Cancer?

Modest Sunbathers
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Nucleotide
Excision Repair
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Nature Reviews | Cancer

Nucleotide Excision
Repair Proteins

XPA
XPB
°C
oD
E
DF
PG

X X X X X

Errol C. Friedberg
Nature Reviews Cancer 1, 22-33 (2001)



Xeroderma
Pigmentosum

Grossly
Deficient in
Nucleotide

Excision Repair

2000-fold
increased risk of
skin cancer



Lack of DNA repair accelerates the onset of cancer
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Larry Grossman wondered whether there is variation
in DNA repair Capacity in the General Population

Dr. Lawrence Grossman
(1924-2006)



Interindividual Variation in DNA Repair
Capacity
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XP frequency = ~1:250,000 giving a theoretical maximum of
how many cases worldwide with 2,000-fold increased risk

Even if just 1% of the population is relatively repair deficient,
could have how many with several-fold increased risk



Interindividual Variation in DNA Repair
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XP frequency = ~1:250,000 giving a theoretical maximum of
~28,000 cases worldwide with 2,000-fold increased risk

Even if just 1% of the population is relatively repair deficient,
could have tens of millions with several-fold increased risk



A functional assay was developed by:

Dr. Lawrence Grossman ) . i
Dr. Qingyi Wel
(1924-2006) &Y



Reactivation of UV damaged DNA by

Athas & GROSSMAN

HOST CZ“ RZGCT'VGT'O“ (HCR) Cancer Res. 1991

aﬂ\p‘ ampt
. +Uuv "
.- k4 light : o _
E, pCMV 7 > 5 pCMV Transient
¥ transfection
\ Oé . 0{} .
WMy _ my _ Y peripheral
{ Constitutive ] { Constitutive ] b I o]0 d
lymphocytes

2 3 4
TLC
shee . -«
® L

CAT Assay Time to repair



RNA Polymerase IT is exquisitely
sensitive to DNA lesions

Nature Reviews Molecular Cell Biology 9, 958-970
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Fresh Circulating Lymphocyte
Plasmid HCR in XP and Normal PBL
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Fresh Circulating Lymphocyte
Plasmid HCR in XP and Normal PBL
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Case-Control Study monitoring DNA Repair Capacity
(DRC) by Host Cell Reactivation (HCR) of plasmids
containing DNA damage
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Low NER status combined with excessive sun
exposure is very dangerous

Wei Q, Matanoski GM, Farmer ER, Hedayati MA, GROSSMAN L. Proc
Natl Acad Sci U S A. 1993 90:1614-8.



What experimental question will you ask in
Module 27

How efficiently does DNA repair by the Non
Homologous End Joining (NHEJ) pathway act
on DNA damage with different topologies?

This raises the following questions

 How does DNA get damaged?

* What is DNA repair?

* Why does DNA repair exist?

 Why do we care about how efficient DNA repair is?

« How will we actually measure DNA repair efficiency?
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DNA double-strand break repair

Non Homologous/ \ Homologous
End Joining Recombination
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Key Experimental Methods for
Module 1

* Mammalian tissue cell culture

* Monitoring protein level by Western blot
* Generating plasmids with DNA damage
* Transfecting plasmids into mammalian cells

 Using fluorescent proteins as reporters of
biological processes

* Flow cytometry to measure DNA repair

o Statistical analysis of biological data
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How do you grow mammalian cells?

TISSUE CULTURE
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Confluent monolayer
growing in flask after
about one week

Medium removed,
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Cells spreading
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Cells resuspended
in medium, ready
for counting and
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Trypsin removed, i
leaving residual film
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From Freshney’s “Culture of Mammalian Cells”



Chinese Hamsters
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How do you grow mammalian cells?

TISSUE CULTURE

PETRIDISH TISSUE

PROLIFERATION
OF
FIBROBLASTS

MONOCELLULAR
LAYER OF
FIBROBLASTS

Confluent monolayer
growing in flask after
about one week

Medium removed,
monolayer washed
in PBSA

Cells spreading
after a few hours

Cells reseeded in

fresh flask

Cells resuspended
in medium, ready
for counting and
reseeding

Trypsin removed, 8 s
leaving residual film

Cells rounding
up after incubation

“Sub-Culturing”

From Freshney’s “Culture of Mammalian Cells”



How do you grow mammalian cells?
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Phase Contrast

Hela cells have been cultured continuously
for scientific use since they were first
taken from the ovarian tumor of Henrietta
Lacks suffering from cervical cancer in the
1950s. They have been utilized
for many purposes, including the
development of a polio vaccine, the
pursuit of a cure for diseases such as
leukemia and cancer, and the study of the
cellular effects of drugs and radiation.

Hela cells from the

Nikon microscope
web site
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Chinese Hamster Ovary (CHO) cells are immortal
— they can grow indefinitely




Key Experimental Methods for
Module 1

* Mammalian tissue cell culture

* Monitoring protein level by Western blot
* Generating plasmids with DNA damage
* Transfecting plasmids into mammalian cells

 Using fluorescent proteins as reporters of
biological processes

* Flow cytometry to measure DNA repair

o Statistical analysis of biological data



Chinese Hamster Ovary (CHO) cells are immortal
— they can grow indefinitely

NEXT LECTURE

* |solating X-ray-sensitive (xrs) CHO cells

e Xrs cells are deficient in NHE)

* Detecting NHEJ proteins by Western

* Measuring NHEJ activity

* Using fluorescent proteins to measure
biological processes....
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Substrate contains a DNA double strand break
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