#### RNA-seq vs. qPCR

#### RNA-seq:

#### qPCR:

- Measures <u>every</u> expressed gene Measures <u>single</u> gene
- You enrich for mRNA And get rid or rRNA
- No mRNA enrichment Uses primers to amplify GOI
- Requires sequencing
- Does not require sequencing

#### Q1:

Why are you more likely to observe sequence from the 3' end of a gene in RNA-seq data (relative to sequence from the 5' end)?

Why are you more likely to observe sequence from the 3' end of a gene in RNA-seq data?

- What is special about the 3'-end? poly A tail 51 - AAA... A 31
- How do you enrich for mRNA? Uses oligo (dT) 's



2000 bp

#### Q2:

To compare two sets of RNA-seq data, you first normalize the results by calculating the RPKM value for each gene. What are the two factors to which you normalize (hint: how do you normalize between experiments AND how do you normalize between genes)?

#### Calculating the RPKM

• RPKM = Reads Per Kilobase Million

from RNA-seq exp.

Total reads / 1,000,000 = per million (PM) scaling factor

Reads / PM = RPM

RPM / gene length in Kb = RPKM

#### Q3:

When analyzing RNA-seq data you identify a group of differentially expressed genes (yellow circle). You already know which genes are involved in DNA repair (red circle).w

Genes related to DNA Repair All genes Differentially expressed

## Which probability distribution will tell you the probability of overlap?

• Hypergeometric distribution

 $P(overlap) = (\blacksquare DNA \ repair Overlap) (\blacksquare Genome - DNA \ repair Diff. \ expr. - overlap) / (\blacksquare Genome Diff. \ expr.)$ 



### What statistical function can you use to test if the overlap is significant?

- Cumulative density function (CDF)
- Fisher's Exact Test



#### Q4:

qPCR is used to measure expression levels of specific genes.

## qPCR is used to measure expression levels of specific genes

#### Why measure p21?

Has to do w/ cell cycle.
Stalls cell cycle in response to DAA damage

#### Why measure GAPDH?

Housekeeping gene Normalize p21 expression

#### Q5:

Briefly <u>describe</u> "synthetic lethality" and how it applies to your cell viability experiment

### Briefly describe "synthetic lethality" and how it applies to your cell viability experiment

#### What is synthetic lethality?

The combination of two mutations kills the cell.

The individual mutations do not.

#### How does it apply to our experiment?

Our BRCA -/- mutant is defective in HR.

We treat with a drug that inhibts

NHEL.

We want to see if the combined knockout of both pathways leads to cell death when we cause DNA damage (etoposide)

## M3D1:Grow phage-based active (cathode) material

- 1. Purify M13 bacteriophage (phage) 4/19/18
- 2. Prelab during 60min incubation
- 3. Finish M13 purification and measure concentration
- 4. Incubate phage with gold nanoparticles (AuNP)



Thank you, Jifa Q. (Belcher Laboratory)!

## Module 3: biomaterials engineering

How do material choice and nanoparticle size affect

battery capacity?



# Phage purification using polyethylene glycol (PEG) in 2.5M NaCl



## Determining phage titer (number of virus):





- By plating: plaque assay
  - Phage slows E. coli growth = plaque (cleared zone)
  - Plaque-forming units: PFU/mL
- By spectrophotometry

# phage / mL = 
$$\frac{(6 \times 10^{16}) (A269 - A320)}{\text{# bases in phage genome}}$$

\* Calculation

Calculation

Quartz cuvettes are expensive!

## M13 is a high aspect ratio phage 990hm Long Control of the contro



## M13 virus life-cycle has four essential steps



## M13 is a nonlytic bacteriophage

(so we can easily get lots of it)





## Phage display allows unbiased selection of useful peptide sequences (typically binding)



## M13 are engineer-able biomaterials

- Our p8 coat protein was mutated to contain sequence DSPHTELP
- Modified p8 proteins bind single wall carbon nanotubes (SWCNT), iron, gold, and other cationic metals
- Example of this virus in literature (Science, 2009):



## M13 nanowires as battery cathode



Image: George Sun

## You will make a "Gold Standard" battery and an experimental battery

- Gold standard: 3.8nm Gold, 40 AuNP per phage
- Choice of combination: Keep total volume less than 50ml
  - 3.8nm Gold5nm Gold

  - 9nm Gold

concentrations on wiki

# Considerations for experimental battery: nanoparticle material and size

- Conductivity
  - Au is conductive, how much total gold will be in your cathode?
- Internal battery reaction catalysis
  - Li+ in solution → Li+ embedded
    - lithium embedded in iron phosphate
    - gold may catalyze this interaction
  - Surface area to volume ratio
    - consider surface area of each nanoparticle
    - consider NP binding phage reduces iron phosphate binding sites

Design with your lab partner. What is your hypothesis?

## You will make two flasks—one for each battery

### Gold standard



- 4e13 Phage
- 40(3.8nm) AuNPs/phage
- Water (final volume 50 mL)

### **Experimental**



- 4e13 Phage
- ? AuNPs
- Water (final volume 50 mL)

## Today in lab

- 1. Finish phage purification
- 2. Calculate phage number
- 3. Mix components: phage, AuNP, FePO<sub>4</sub> nanowires (2 flasks, one per battery)

M3D2 HW: Describe **FIVE** recent findings that could potentially define an interesting research question.

- Formally cite the finding
- Write 3-5 sentences summarizing the finding