M1D1: In silico cloning & confirmation digest of protein expression vector

February 9, 2018

Plan for today

- 1. Quiz (<45 min)
- 2. Pre-lab discussion part 1
- 3. Build protein expression plasmid (virtually)
- 4. Pre-lab discussion part 2 (~3:45pm)
- 5. Confirm protein expression plasmid (actually)

Mark your calendars!

- Data summary (15%)
 - completed in teams and submitted via Stellar
 - draft due 3/12, final revision due 3/26
 - format in bullet points
- Mini-presentation (5%)
 - completed individually and submitted via Gmail
 - due 3/17
- Laboratory quizzes
 - scheduled for M1D4 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - All entries viewed, one graded by Casper, due the day after M1D7
- Blog (part of 5% Participation)
 - due 3/18 via Blogspot

How can we make our protein of interest?

Generate plasmid to make FKBP12 protein

You will do this in silico today

1) Amplification

2) Digestion

3) Ligation

1) Amplification by polymerase chain reaction (PCR)

Leslie's favorite PCR animation

http://learn.genetics.utah.edu/content/labs/pcr/

1) Amplification—Guidelines for primer design

- Landing sequence: match to FKBP12 gene
- Flap sequence: endonuclease recognition sequence, junk DNA
- Length (landing sequence): 17-28 bp

GC content: 40-60 %

• Tm:<65 °C

 Avoid secondary structure and repeat sequences (e.g. hairpins, primer dimers, ATATAT)

1) Amplification—PCR reagents & conditions

2) Digestion—Create compatible ends on insert fragment and backbone

2) Digestion—Restriction enzymes

 Many function as homodimers

 Cleaves backbone at site of palindromic recognition sequence

2) Digestion—Reagents and conditions

Temperature

25 or 37C

Time

1hr- overnight

3) Ligation—Create plasmid pRSETb_FKBP12

pRSETb vector

pRSETb_FKBP12 plasmid

3) Ligation—Use T4 DNA Ligase to insert *FKBP12* gene into expression vector (pRSETb)

- Requires ATP
- Forms covalent phosphodiester bond between 3' OH acceptor and 5' phosphate donor

https://www.neb.com/products/m0202-t4-dna-ligase#Product%20Information

3) Ligation conditions—Part 2c of lab

- Calculate volumes of insert and backbone needed for ligation
- Use recovery gel to estimate insert and backbone concentrations

3) Ligation—Calculations

- 1. Determine volume of backbone
 - Use backbone concentration estimate from gel
 - Want 50 100 ng
- 2. Calculate moles of backbone
 - Vector = 2776 bp, MW bp = 660 g/mol
- 3. Calculate moles of insert
 - Insert = 480 bp, 4:1 ratio of insert:backbone
- 4. Calculate volume of insert
 - Use insert concentration estimate from gel

3) Ligation—Backbone-to-insert ratio

Ideally, want 4:1 insert:backbone

- molar ratio, *not* mass or volume

• What if too much insert?

What if too much backbone?

What should go in your notebook?

	Complete	Partial	Incomplete
Date of experiment (include Module#/Day#)	1	0.5	0
Title for experiment	1	0.5	0
Hypothesis or goal / purpose	1	0.5	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Notes on protocol changes / clarifications	1	0.5	0
Observations (qualitative / raw data)	1	0.5	0
Data analysis (calculations / graphs / tables) 1	0.5	0
Summary and interpretation of data	1	0.5	0
Information is clear	1	0.5	0
All days represented	1	0.5	0

Due 10pm the day after each module

http://engineerbiology.org/wiki/20.109(S18):_Assignments

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- · Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes.
- Include calculations.
- · Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(S18)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with Josephine and Casper
 - Right-click and choose 'settings'
 - Add collaborators by email

Today in lab...

- Virtual cloning exercise to build pRSETb_FKBP12 expression plasmid
- Actual confirmation digest of pRSETb_FKBP12: prepare eppendorf tubes with plasmid, enzyme and buffer and bring to front bench

For next time...

- Prepare a template for Benchling entries
- See wiki for homework details

How do we confirm the plasmid product?

- Amplify plasmid
 - Transform into bacteria

Purification

Separate plasmid from chromosomal DNA

Digestion

Confirm the plasmid contains expected fragments

Transformation

- 1. Incubation
- 2. Heat shock (or electroporation)
 - DNA taken in by competent cells
- 3. Recovery
- 4. Selection

Purification of plasmid DNA a.k.a. "Mini-prep"

- 1. Resuspend cells
- 2. Lysis
- 3. Neutralization
 - Separates chromosomal
 DNA from plasmid DNA
- 4. Wash
- 5. Resuspend or elute DNA

Digestion to confirm plasmid

This is what you will do in lab today

Confirmation digests

 Ideally, will cut once in insert and once in vector

– Xbal and EcoRI?

– Pstl?

- Ncol?

Don't cut with same enzymes used to make the vector pNIL-PCR (6000bp) Ideally want 2 fragments of different lengths

Fragments should be > 200 bp