M1D4: Review results of small molecule microarray (SMM) screen

- 1. Comm Lab workshop
- 2. Review results of SMM screen
- Choose small molecules for secondary assays

Overview of Mod 1 experiments:

How are SMM slides prepared?

- Gamma-aminopropylsilane (GAPS) slide coated with polyethylene glycol (PEG) spacer
- PEG coupled to 1,6diisocyanatohexane to generate isocyanate-functionalized slide
- Isocyanate able to react with nucleophilic functional groups

How are SMM slides printed?

- Each slide contains ~12,000 spots
 - ~4,200 small molecules / ligands (printed in duplicate = ~8,400)
 - Fluorescein sentinel spots
 - DMSO negative control spots

Workflow for SMM experiment

SMM Screen

Data Acquisition

subarray

subarray

How did we screen for small molecules that bind MAX-6xHis?

- Incubate SMM slide with MAX-6xHis protein
- 2. Wash away excess protein
- 3. Incubate SMM slide with AlexaFlour 647 anti-His antibody

Is it problematic if proteins other tha MAX-6xHis are present?

How will you analyze the SMM results?

- Align spots using fluorescence on 532 nm channel (sentinel spots)
- 2. Quantify fluorescence on 635 nm channel
- 3. Identify 'hits' with improbably high fluorescence
- 4. Complete 'by eye' analysis of putative hits to manually identify false positives

Sentinel spots are used to align the slides

- Slides printed in blocks (16 rows X 16 columns)
- Each small molecule is identifiable via intersecting lines from sentinels

in ideal situation

in practice

Fluorescence is quantified to identify 'hits'

- Fluorescent signal from each small molecule spot is represented by an array of numerical values
 - Intensity of signal at each pixel is quantified
- Signal-to-noise ratio is calculated for each array

Significant fluorescence calculated as Z-score

median absolute deviation (MAD)

Robust Z-score =

• Robust Z-scores help eliminate influence of outliers

Robust Z-scores used to set threshold for putative binders

- Why are empty wells clustered at zero?
- Where do you expect to see putative binders?

Robust Z-scores used to compare consistency of replicates

- Linear relationship observed if replicate Z-scores are same
- What does it mean if replicates do not show a linear relationship?
- Where do you expect to see putative binders?

'By-eye' analysis used to manually validate hits

_	Internal_ID	Zscore_Rep1	Zscore_Rep2	Slide_Rep1	Slide_Rep2	Loc1(block, row, col)	Loc2(block, row, col)
	KI10167	37.029230	24.797054	50033718.0	50033720.0	2,2,3	2,7,11
	KI10451	38.126523	33.380424	50033718.0	50033720.0	42,12,8	42,15,14
	KI10796	16.684962	18.340951	50033718.0	50033720.0	45,10,16	45,12,4
	KI10776	19.640085	18.046225	50033718.0	50033720.0	41,1,6	41,8,10
	KI11103	16.929258	19.408047	50033718.0	50033720.0	42,1,12	42,6,8
	KI11145	18.763623	15.206143	50033718.0	50033720.0	8,10,14	8,14,16
	KI12064	25.653114	15.651485	50033718.0	50033720.0	41,11,4	41,15,5
	KI20071	22.544108	24.043693	50033689.0	50033693.0	26,12,11	26,5,4
	KI20165	25.236351	23.586604	50033689.0	50033693.0	4,2,3	4,7,11
	KI20173	36.988660	55.511073	50033689.0	50033693.0	4,16,2	4,6,9

Does a brighter "red" signal mean that that small molecule has a higher affinity for our POI?

Does a higher "Z-Score" mean that that small molecule has a higher affinity for our POI?

How will you choose which small molecules to test using secondary assays?

- Strategy: Identify common features present in small molecule hits
- Strategy: Consider the binding metrics from the SMM screen
- Strategy: Research the amino acid residues relevant in Myc:MAX binding
- Strategy: Choose you own adventure 😳

For today...

- Be sure to email (zhanj@mit.edu) which small molecules you want to test to me by 12p on Monday, February 26!
- Submit updated figure homework via email (zhanj@mit.edu) by 10p tonight!!

For M1D5...

- Write title and caption for SDS-PAGE and BCA figure
- Draft outline of script for Research talk

Notes on figure making:

- Title should be conclusive
 - Don't include what you did, rather include what you found / discovered
- Caption should not include methods details
 - Define abbreviations, symbols, etc.

Figure X: Title is the take-home message of the experimental data.

Caption includes all of the details necessary to understand the data presented in the figure...not methods!!

Research talk due Saturday, March 2

- Prepare a video of you verbally discussing your research
 - Use any device or Zoom
 - No visuals / slides
 - Do not edit / splice the video
- Submit to Gmail account!
 - bioeng20.109@gmail.com
 - Remember to follow file name guidelines

Research talk should be 3 min (+/- 15 sec)

- Introduce yourself
- Provide important background information
- Describe key results
 - Briefly describe critical methods used to generate important data
 - Use quantitative descriptions when discussing results
- Highlight the take-home message

What data / results should be included?

• Protein purification

• Protein purity and concentration

• DSF results

Review assignment description on wiki

Category	Elements of a strong presentation	Weight	
Introduction	 Introduce yourself and the research Summarize the background information necessary to understand the research State the research question 		
Methods & Data	 Provide ONLY the method information necessary to understand the results Give complete and concise explanations of the results Relate the results to the central question 		
Summary & Conclusions	 Highlight the key finding(s) relevant to the central question / hypothesis 	25%	
Organization	Give a logical, easy-to-follow narrativeInclude transition statements		
Delivery	 Show confidence / enthusiasm and speak clearly Use appropriate language (technical or informal, as appropriate) Be mindful of the time limit (3 minutes +/- 15 seconds!) 	10%	

The Research talk will be graded by Dr. Noreen Lyell with input from Dr. Becky Meyer and Jamie Zhan.