Module 2: Measuring gene expression

DNA damage and repair pathways

3/8/18

What will we study in Mod 2?

- 1. DNA damage and repair pathways
- 2. Role of BRCA2 in DNA repair and cancer
- 3. Pathway addiction in cancer treatment
- 4. Differential gene expression in cancer cell lines
- 5. Laboratory skills:
 - Mammalian cell tissue culture procedures
 - Big data analysis methods
 - Molecular biology techniques

DNA is the hereditary material in all known organisms

Each human cell contains 6 billion bp

Guanine

In the time it takes you to read this sentence, your cells will accumulate ~10 trillion DNA lesions throughout your body!

Assumptions:

20,000 lesions / cell / day, 10¹³ cells in body, 4 sec to read

From Prof. Leona Samson

DNA damage ≠ mutation

- Damage is the creation of a DNA lesion
 - Basepair 'decorations'

Strand breaks

 Mutations occur when the damage is 'copied' during replication and becomes ingrained in the genetic code

How is DNA damage repaired?

The Nobel Prize in Chemistry 2015

Photo: A. Mahmoud Tomas Lindahl Prize share: 1/3

Photo: A. Mahmoud Paul Modrich Prize share: 1/3

Photo: A. Mahmoud Aziz Sancar Prize share: 1/3

The Nobel Prize in Chemistry 2015 was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar *"for mechanistic studies of DNA repair"*.

HR and NHEJ repair double-strand breaks

How does this relate to cancer?

Personal Characteristics / Lifestyle

Last year, ~600K cancer deaths in US

- Abnormal cell growth that invades nearby tissues
 - Metastasis is the spread from original site
- Undifferentiated and unresponsive to cell signaling cues

Xeroderma pigmentosum increases risk of skin cancer by 2,000-fold

- Rare autosomal recessive genetic disorder in DNA repair pathway
 - Nucleotide excision repair (NER)
- Deficient in ability to correct damage caused by ultraviolet light

UV light induces pyrimidine dimers

- Neighboring thymines covalently bind
- Results in DNA lesion that prohibits replication

NER corrects thymine dimers

- Segment of DNA containing the lesion is removed
- New DNA is synthesized by polymerase
 - Undamaged strand used as template

Mutations in NER enzymes accelerate cancer onset

Nature Reviews

Does variation exist in the 'normal' population?

Then, measure Cat enzymatic activity to determine repair capacity

Cancer Res (1991) 51:5786-5793

Normal population includes deficient and super repairers

Natural sequence variation exists throughout the genome

- Single nucleotide polymorphisms (SNPs) occur every ~1,000 bp
 - If you were to compare two individuals, would find ~6 million SNP variants
- Each SNP represents single bp change (difference) in DNA sequence

What does this mean?

genetic susceptibility + environmental exposure
= 5.3x more likely to develop skin cancer

Mutations in DNA repair pathways linked to several cancers / diseases

Nat Rev (2012) 9:144-155

Our research will focus on doublestrand break repair pathways

Double-strand break

- Homologous recombination (HR)
 - Breast cancer
 - Ovarian cancer
 - Pancreatic cancer
- Non-homologous end joining (NHEJ)
 - Immune deficiency

Mutations in repair pathways can be exploited in cancer therapies

BRCA2 recruits enzymes involved in homology searching, strand exchange, and Holliday junction formation

DNA PKs kinase activity required for re-ligating broken DNA ends

Cancer cells rely on same repair pathways as normal cells

If cancer cells carry a mutation in *BRCA2*, then cells are dependent on NHEJ for doublestrand break repair

Targeting active repair pathway may preferentially kill cancer cells

Overview of Mod 2

Your goal is to synthesize the information / data into a single, coherent story