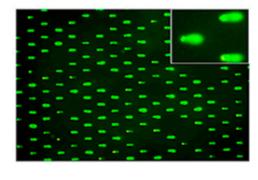
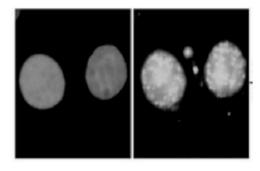
M1D5: Develop approach for sub-nuclear visualization of DNA damage

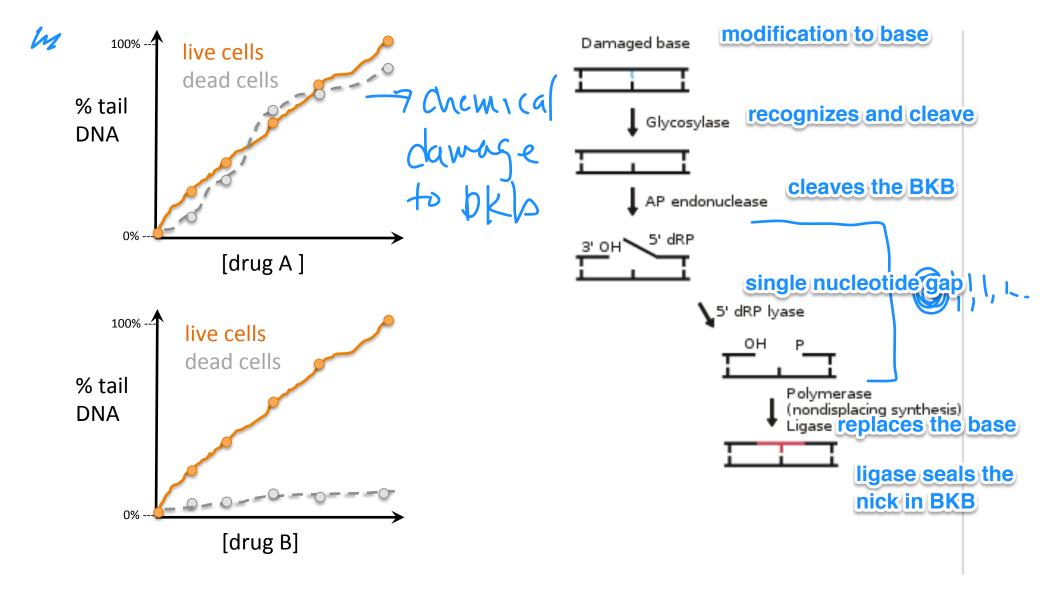
09/29/16


- 1. Pre-lab Discussion
- 2. ½ class to TC room
- 3. ½ class start data analysis
- Announcements: Photographer in lab Tuesday Oct. 4th 2:30pm

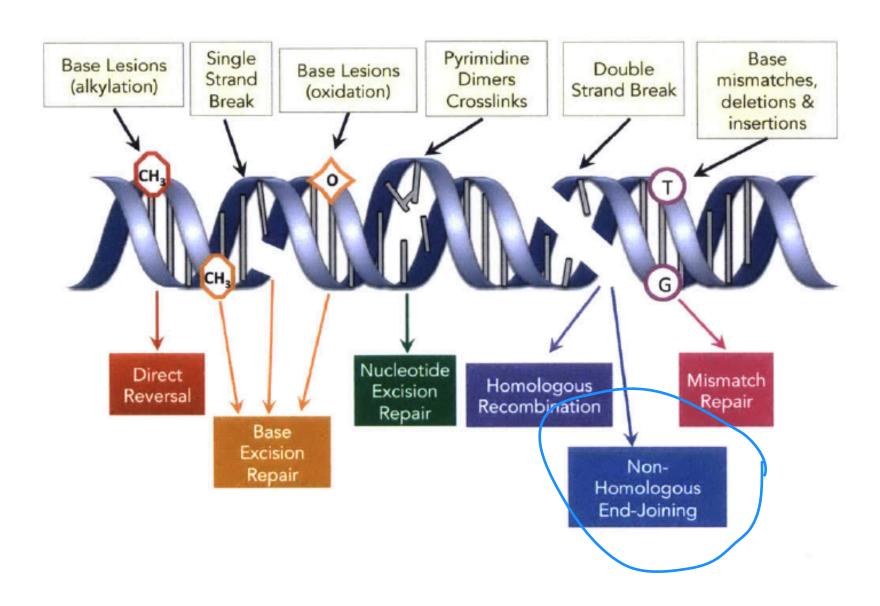
Overview of


"M1: Measuring Genomic Instability"

- 1. Optimize comet chip assay
- Test loading variables

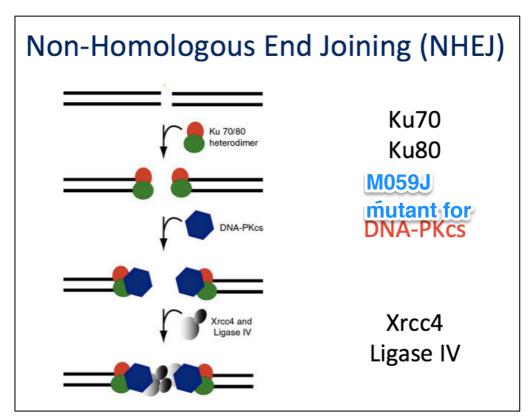


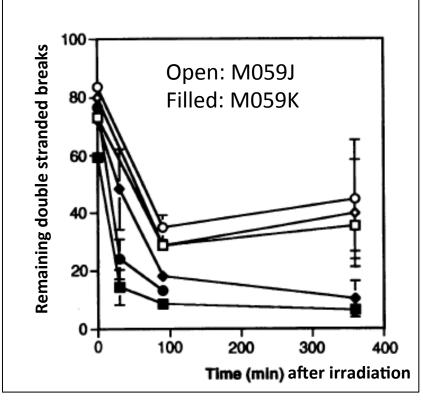
- 2. Use comet chip assay to measure DNA damage / repair
- Measure effects of MMS and H₂O₂ on BER
- Assess repair variability in healthy individuals

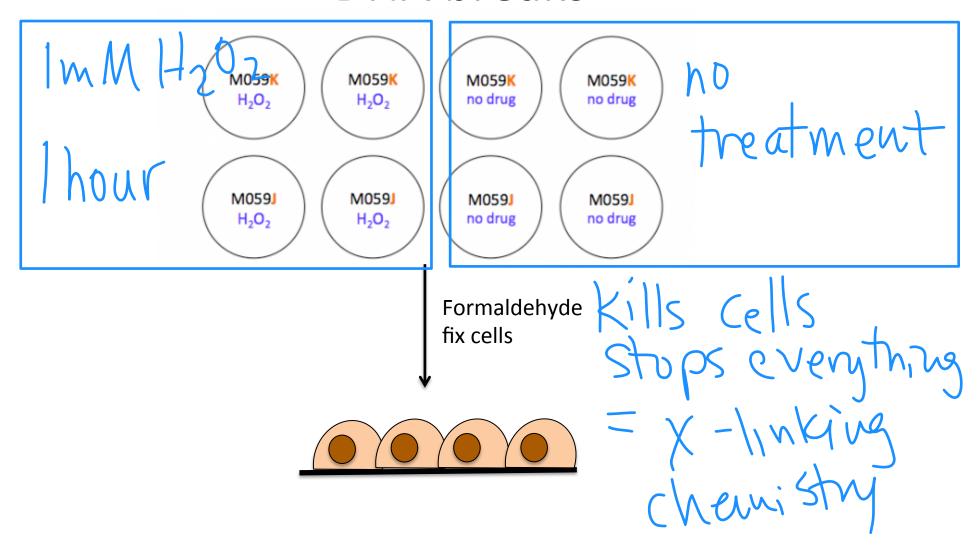


- 3. Use immuno-fluorescence assay to visualize DNA repair
- Examine effect of H₂O₂ on DSB abundance

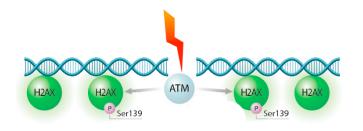
Both H₂O₂- and MMS-caused DNA damage is repaired by base excision repair (BER)

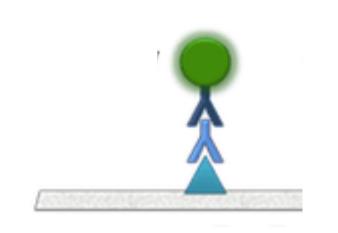



Both H₂O₂- and MMS-caused DNA damage is repaired by base excision repair (BER)

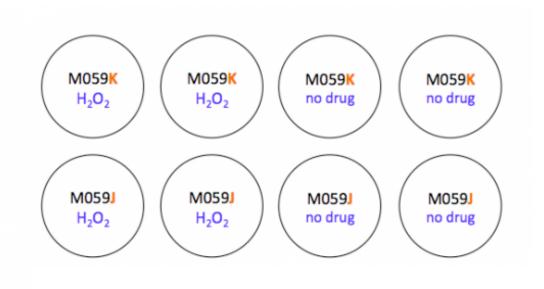

M059K and M059J cell lines

- M059K is wild type
- M059J is missing DNA-PKcs, deficient in NHEJ DNA repair
- human glioblastoma fibroblasts

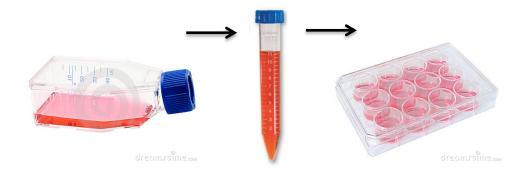



γH2AX assay to detect double-strand DNA breaks

Using immunofluorescence: γH2AX assay to detect double-strand DNA breaks



- histone H2AX phosphorylated at Ser139 if DSB
- use antibodies against γH2AX



protein of interest	A γH2AX			
primary antibody	Mouse anti-human anti-γH2AX			
secondary antibody	★ goat anti-mouse			
fluorescent dye exc./ em. wavelengths	488 / 520 nm			

Seeding coverslips in the tissue culture hood

- on gelatin-coated coverslips
- 100,000 cells / well

 trysinize adherent cells to detach from flask

Mammalian cell culture medium

M059K/J

Food:

- DMEM: F12 Ham's
 - Dulbecco's Modified Eagle's Medium
 - nutrient mixture F12

glucose, salts, amino amids, vitamins phenol red is a pH indicator

FBS: fetal bovine serum

BSA and other proteins growth factors, cytokines, lipids, cholesterol

non-essential amino acids

glucose primarily used for growth

Non-food:

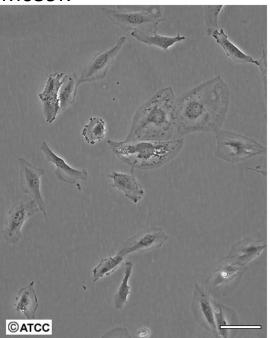
- antibiotics:
 - penicillin
 - streptomycin

Seeding your M059J/K cells

1. Rinse with PBS

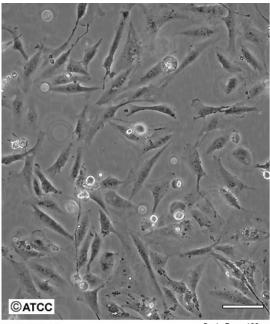
remove extra proteins that block trypsin activity

2. Detach with trypsin cleave binds between cells and plastic


3. Calculate number of cells

seed specific # on glass coverslips

4. Seed coverslips


-higher resolution to image through glass (over plastic)
-ease of use; transferring coverslip rather than
washing dish with primary, secondary, etc.

M059K

ow Density

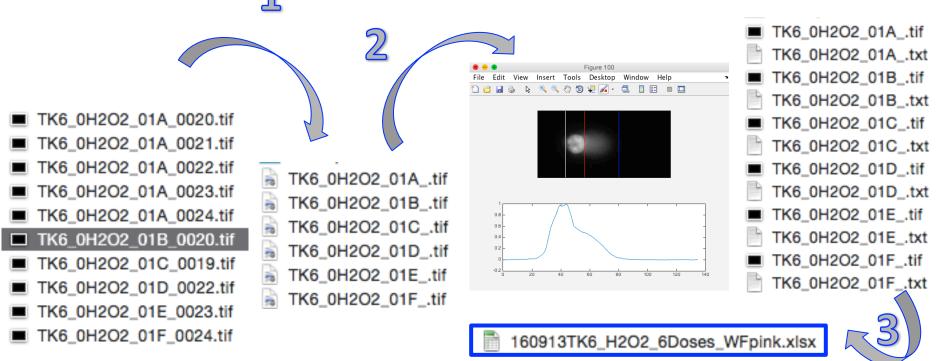
Scale Bar = 100um

High Density

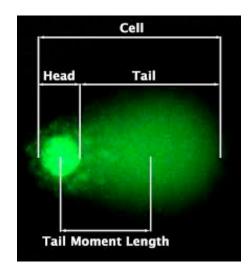
Scale Bar = 100µn

Data analysis in ImageJ, MATLAB, and Python

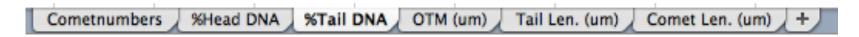
1. ImageJ


- from several images per well to one stack per well
- GenImageStacks_sin gleimage.txt

2. MATLAB


- for each comet in stack, calculates intensity of head and tail, as well as length of tail
- creates one .txt per comet
- guicometanalyzer.m

3. Python


- summarizes all Matlabcreated .txt files into one .xlsx 6-tab spreadsheet
- comettoexcel_gui.com mand

	01	02	03	04	05	06	\rightarrow	[drug]
Α	7.45	7.68	11.33	16.49	34.06	29.43		- 0-
В	8.59	7.33	10.03	14.49	26.58	37.04	es	live
С	6.86	8.73	11.94	18.78	34.69	37.87	at live	live
D	10.37	11.93	10.77	12.14	9.68	11.71	triplicates	
E	14.10	10.54	9.76	10.79	11.85	10.32		dead
F	15.28	10.51	9.53	10.36	11.67	9.29	-	acaa
[H2O2] (mM)	0	0.25	0.5	1	2	4		
[MMS] (uM)	0	10	20	40	60	80		

- Cometnumbers: how many comets were used for calculation in each well (= stack)
- %Head DNA = 100 * HeadFluorescence / (HeadFluorescence + TailFluorescence)
- %TailDNA = 100 * TailFluorescence / (HeadFluorescence + TailFluorescence)
- Olive tail moment (OTM) = (%TailDNA / 100) * (TailCenterOfMass HeadCenterOfMass)
- Tail length
- Comet length

Make strides on your statistical analysis!

- On M1D6, you'll continue creating Results figures:
 - Plot your data with 95% confidence intervals

$$\frac{1}{x} \pm \frac{t_{table} * stdev}{\sqrt{n}}$$
$$t_{table} = TINV(0.05, n-1)$$

— How certain are you that two populations are different?

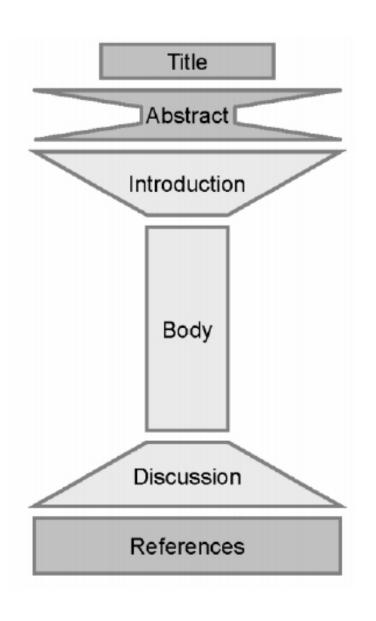
$$p = TTEST(array1, array2, 2, 3)$$
2-tailed unequal variance (heteroscedastic \odot)

The Student's t-test only applies to two data sets.
Only compare two conditions at a time.

Assignments for M1

Data summary draft

- due by 5pm on Wed., October 12
- revision due by 5pm on Mon., October 24


Summary content

- 1. Title
- 2. Abstract
- 3. Background, Motivation
- 4. Figures, Results & Discussion, Interpretation
- 5. Implications, Future Work

- Mini presentation due by 10pm on Sat., October 15
- Blog post for M1 due by 5pm on Tue., October 25

Manuscript architecture: Data summary

In paragraph form!!

Background and Motivation (bullets)

Results and Interpretation (bullets)

-Goal/Purpose

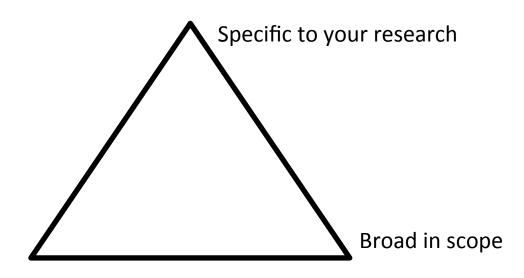
-what is your expected result?

-what are your actual results?

-what does this suggest/indicate?

-what does this motivate to do next?

Implication and Future Work (bullets)


References from Intro

Implications and Future Works

M1D6 HW: Draft Implications and Future Work section

Implications and Future Work: potential topics [edit]

- Topic: Did your results match your expectations?
 - If no, provide a putative explanation. If yes, how can you further test if your hypothesis is correct?
- Topic: Based on the results, whether they matched your expectations or not, what experiments might you recommend next?
 - Follow-up experiments could distinguish between competing explanations of a given outcome or broaden the sample set for a
 question you already asked, to give just two examples.
- Topic: How might this assay be improved?
- Topic: How might this assay be used as a research tool? in the clinic? in industry?

In your Data summary tie together your background and motivation, and implications and future work

Mini Presentation

- Follow time and content guidelines
- Introduce yourself and your research
- Clearly state your hypothesis to identify main question

-Use actual numbers (or fold changes) when discussing data

Category	Approximate worth	Elements of a strong presentation
Content	50%	 Did you introduce your research? Did you include the key findings (and the techniques used to gather these results, if necessary)? Was the importance of your project clear?
Organization	25%	 Is the presentation logical and easy-to-follow? Are the main points emphasized? Did you include transition statements such that the presentation 'flows' and is easily followed/understood?
Delivery	25%	 Do you show confidence and enthusiasm? Did you use appropriate language (technical or informal, as appropriate)? Is your speech clear?

In lab today...

- 1. 3 teams into tissue culture room to seed M059J/K onto coverslips (Yellow, Green and Blue)
- 2. Use this time for data analysis with our *new* macbooks; get ahead on your data summary!
 - you need to complete some analysis to draft your implications section for next week