

### The antigenantibody interaction

#### Characterization of scFvs that bind lysozyme



- The goal of this screen is to find a scFv clone with improved binding to lysozyme
- Antibody with a lower K<sub>d</sub> for its antigen means a more stable interaction and a higher affinity
- We sorted a library of scFv yeast that bind to lysozyme
- Today will determine the dissociation constant of a single clone scFv with lysozyme

### CDRs generate antigen binding site specificity

Lysozyme bound to antibody



- Specificity, degree to which an antibody differentiates between different antigens
- Finger-like CDRs usually recognize 15-22 amino acids
- Basic antibody structure maintained (β strands) when variability confined to CDR loops

# The Antigen - Antibody interaction forms multiple contacts

3D: Lysozyme bound to variable region



- Green: lysozyme
- Blue/Yellow:  $V_L$  and  $V_H$
- Red amino acids that interact
- Pink critical glutamine reside fits into cleft of CDR

# Noncovalent bonds form the basis of the antibody binding site



Immunology 4<sup>th</sup> ed. Kuby et al. W. H. Freeman and Company; 2000.

- Strength of each of these noncovalent interactions is weak
  - Many noncovalent bonds are required to form a strong interaction
- Each of these interactions operates over a very small distance (~1 Å)
- This requires a high degree of complementarity between the CDR of the antibody and the antigen

## Influenza antigen and antibody binding illustrates complementary when separated by 8 Å



Immunology 5<sup>th</sup> ed. Kuby et al. W. H. Freeman and Company; 2000.

#### Large variation in antibody binding pockets



Immunobiology: The Immune System in Health and Disease 5<sup>th</sup> ed. Janeway CA Jr, Travers P, Walport M, et al. New York: Garland Science; 2001.

Binding a monovalent antigen by an antibody can be described by a bimolecular equation

Antigen + Antibody 
$$\begin{array}{c} k_1 \\ \hline k_{-1} \end{array}$$
 Antigen-Antibody  $k_1$ 

$$K_1$$
=rate of association  $K_{-1}$ =rate of disassociation

$$A + B \xrightarrow{\kappa_1} AB$$

# The equilibrium association constant (K<sub>a</sub>) is a good indicator for antibody affinity

$$A + B \stackrel{k_1}{\longleftrightarrow} AB$$
$$K_a = [AB] [A][B]$$

- Ratio of products to reactants
- Affinity, the strength of the total noncovalent interactions between one antigen and antibody
- Units of  $K_a$  are concentration<sup>-1</sup>
- Example: nM<sup>-1</sup>

## Equilibrium dissociation constant ( $K_d$ ) is an indicator of the stability of a complex

$$A + B \stackrel{k_1}{\longleftrightarrow} AB$$
$$K_d = [A][B]$$
$$AB$$

- Ratio of reactants to products
- Antibodies produced in a typical immune response usually varied from  $K_d = 10^{-7}$  (~100nM) to  $10^{-9}$ (~1nM)
- Units of K<sub>d</sub> are concentration
- The smaller the K<sub>d</sub> the more stable the interaction

#### **Prof. Koehler Mod1 Lecture 4**

#### Range of biologically important interactions

| Antibody-antigen<br>interactions | Type of Interaction                                                                     | K <sub>D</sub> (molar)                                                      | $\Delta G^0_{bind}$ (at 300K)<br>kcal/mol |
|----------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
|                                  | Enzyme:ATP                                                                              | ~1×10 <sup>-3</sup> to ~1×10 <sup>-6</sup><br>(millimolar to<br>micromolar) | -4 to -8 kcal/mol                         |
|                                  | signaling protein<br>binding to a target                                                | ~1×10 <sup>-6</sup><br>(micromolar)                                         | -8 kcal/mol                               |
|                                  | Sequence-specific<br>recognition of DNA<br>by a transcription<br>factor                 | ~1×10 <sup>-9</sup><br>(nanomolar)                                          | -12 kcal/mol                              |
|                                  | small molecule<br>inhibitors of proteins<br>(drugs)                                     | ~1×10 <sup>-9</sup> to ~1×10 <sup>-12</sup><br>(nanomolar to<br>picomolar)  | -12 to -17 kcal/mol                       |
|                                  | biotin binding to<br>avidin protein<br>(strongest known<br>non-covalent<br>interaction) | ~1×10 <sup>-15</sup><br>(femtomolar)                                        | -21 kcal/mol                              |

higher K<sub>D</sub> value weaker interaction

lower K<sub>D</sub> value stronger interaction

Adapted from Kuriyan, The Molecules of Life, Chapter 12, Molecular Recognition

**Prof. Koehler Mod1 Lecture 4** 

#### Logarithmic vs. Linear display of data



Biomolecular binding interaction at equilibrium: Why is antibody dissociation constant ( $K_d$ ) equal to the antigen concentration at which 50% antibody is bound to antigen?

2 AB K  $k_{J} = \frac{[A][B]}{[AB]}$ 100%hyperbolic Fraching B binding curve 50% [nigh]  $\frac{1}{4} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$   $\frac{1}{4} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$   $\frac{1}{4} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$ [AB]/[AB] fraction = bound B [B]+[AB] = B [AB] [AB] [AB.  $\begin{array}{c} k_{d} = \overbrace{LAJ[B]}^{L} \overbrace{K_{d}}^{L} = \overbrace{B]}^{R} \\ \overbrace{LA]}^{T} \overbrace{LAB}^{T} \overbrace{KAB}^{T} \overbrace{AB}^{T} \\ \overbrace{K_{d}}^{T} \overbrace{EAB}^{T} \\ k_{d} = \overbrace{LAB}^{T} \\ k_{d} = \atop k_{d} = \atop$ 2 01 50% [B] [AB]

Mathematical relationship between fraction bound and free reactant makes estimations easy

$$L + Ab \rightleftharpoons \frac{k_f}{k_r}C$$
  $y = \frac{[L]}{[L] + K_d}$ 

If L in excess (in solution), and [L] = L constant

- at  $L = K_d$  y = 0.5
- if  $L \ll K_d$  then  $y \approx \frac{[L]}{K_d}$  (linear relationship) • if  $L \gg K_d$  then  $y \approx 1$  (at saturation)



## Alternative methods to measure binding dynamics without necessitating equilibrium

#### Binding of the antibody to the antigen alters the resonance readout and can translate to affinity



#### Surface plasmon resonance (Biacore)



Julenius (2002) Methods Mol Biol 173: 103-111

### Binding may be quantified using methods other than fluorescence

٠

circular dichroism



oxymetry.org

• absorbance spectroscopy

Yonekawa *et al.* (2005) *FEMS Microbio Lett* **244**: 315-321

## Isothermal titration calorimetry measures thermodynamic parameters of interactions



#### Prof. Koehler Mod1 Lecture 4

Methods to evaluate binding interactions

![](_page_20_Figure_2.jpeg)

**Relative information content** 

Practically: how will we measure equilibrium binding with different antigen concentrations?

![](_page_21_Figure_1.jpeg)

## Mean fluorescent intensity of gated scatterplot is to fraction bound

scFv Clone 14989 (650nM K<sub>d</sub>) incubated with:

![](_page_22_Figure_2.jpeg)

488 fluorescence: Amount of scFv expressed

# Plotted MFI illustrates fraction of antigen bound to antibody

![](_page_23_Figure_1.jpeg)

### Today in "lab"

### 1) Set up titration of equilibrium binding reactions

![](_page_24_Figure_2.jpeg)

#### 2) Analyze flow cytometry data

![](_page_24_Figure_4.jpeg)

Ligand concentration