- Announcements, Review HW
- Lab Quiz
- Pre-lab Lecture
 - Samples for HR experiment
 - Safety + Technical Tips
- Optional Post-lab Lecture
 - Statistics Review

Announcements, old HW

Powerpoint Pitch due in one week

- OH: 1 session Sun Mon Tue

- Careful with calculations
 - For transformation, needed to take into account cell fraction plated to get DNA amount
 - In some cases precision will matter 200mL cell+⊅NA

Lipofection

- DNA carrier is similar to the cell membrane
- Efficient transfection (can be >95%)

Figure 6 - Outline of transfection procedure for Lipofectamine™ 2000 Reagent

Figure from Invitrogen website

Controls for HR Assay

 In lecture 7 you were asked – how do you know that your experiment worked?

Experimental Samples for HR Assay

- You were asked to consider
 - How to increase HR frequency? introduce DSB
 - Within that, effects of

– Your options/DNA available today:

· digested 13 placmid · optional : combine

Tissue Culture Tips

- Set up a few inches behind the barrier/grate
- Minimize opportunities to bump or expose sterile equipment or your samples
 - Uncap bottles before opening pipet
 - Keep tips and dishes closed when not in use
 - Avoid passing your hands/arms over open dishes
 - Don't try to hold > 2 things at once! ☺
- Take care not to clog the pipet-aids

Today in Lab

available: digested 13

Lipofection of MES in TC

Calculations: (DNA + O-MEM) + (Carrier + O-Mem)

0.lng DNA x <u>nl</u> or (0.5) 0.05 ng

3× 150ml + 150mL

- Return here to complete statistics assignment
 - Dive right in, or listen to optional lecture
 - Hand in as part of your notebook
- Sign up for a Friday FACS time: you only have to come to lab at your time (no lab quiz)

touch page

Statistics Review: Basics

- Need-to-know concepts: standard deviation,
 mean, sample size n ≠ degrees of freedom DOF
- Normal (Gaussian) distribution

Confidence intervals (CI) Principle wear observed in reality, finite sample

- Sample problem, $\tilde{x} = 60$
- 95 % CI: "I'm 95% sure that the true mean"

$$= (\mu) = x \pm 3 = 57 - 63$$

$$\mu = x \pm 3 = 57 - 63$$
 $\mu = x \pm a = 60 \pm a = 3$
 $\mu = x \pm a = 3$

trade off Www precision & confidence

Calculating Confidence Intervals (CI)

calculating confidence intervals (CI)
$$\mu = \overline{x} \pm \frac{(t)s}{\sqrt{n}}$$

$$t - vahue + abulated as$$

$$DOF VS. CI 70$$

7 heights DOF=6 • *t* is tabulated by DOF vs CI%

$$-DOF = n - 1 \quad (why? \quad \angle (urrors = x_n - \overline{x}) = 0 \quad \text{kinibian}$$

- In Excel, us *TINV* function
 - Input <u>p</u>-value = (100-CI)/100 Q = 95% P = 0.05

Introduction to t-test

- Every statistical test
 - Has assumptions
 - Asks question
 - Requires human interpretation
- Some t-test assumptions

· equal variances (Type 2 in Excel)
unequal - use Type 3

Question

Are male heights greater tranfetante level of \$50%?

Calculating t-test Significance

$$t_{calc} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt[8]{n_1 + n_2}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

If
$$t_{calc} > t_{table}$$

difference is

significant

DOF = h, + hz - 2

- In Excel, us TTEST function
- Excel returns a *p*-value \rightarrow confidence level • 1 tailed vs. 2-tailed test

 e.g. $\rho = 0.|$
- 1-tailed vs. 2-tailed test

 1-have hypothess in advance
 2- unknown effect, where Stringent (default)

 * Type 3 (unequal variance)

Assignment Today

Get heights of men and women in class

Zeach

- Calculate 95% CI for both means
- Plot means on bar graph with CI error bars

In Excel, and using a table if you have time

Comparing HR Samples

