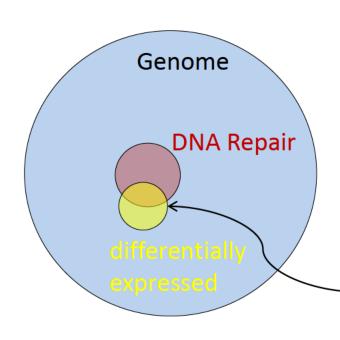


Outline

- Statistical significance for gene annotations
- Big data
 - L1000 transcriptional assay
 - Chemical sensitivity dataset
 - PubChem
 - TCGA
 - Drug Repositioning

Statistical significance



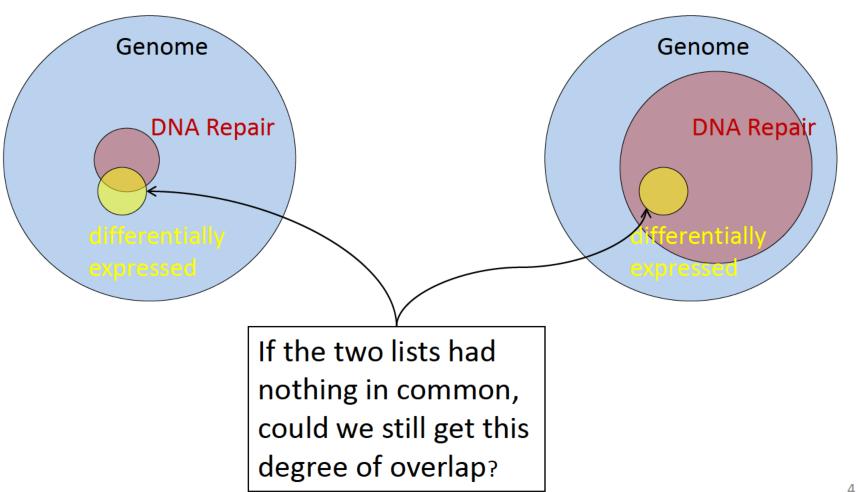
I found that ten of the upregulated genes in my dataset are annotated as "DNA Repair" ...

Is this overlap significant?

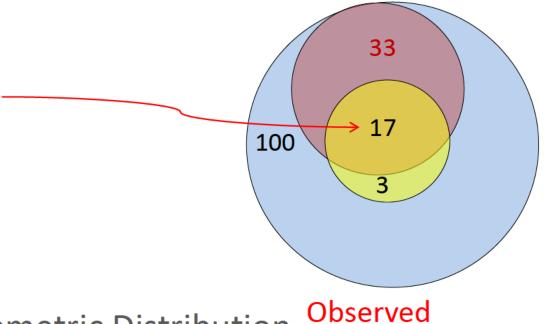
To answer this question we need a null model.

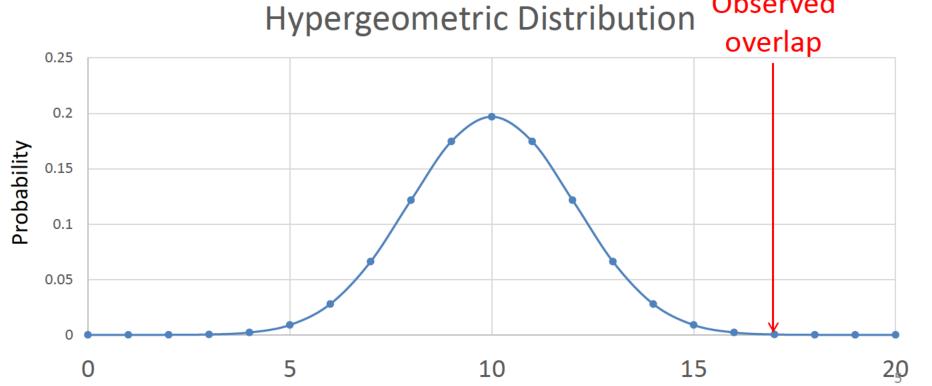
Statistical significance

The significance depends on the size of the lists.

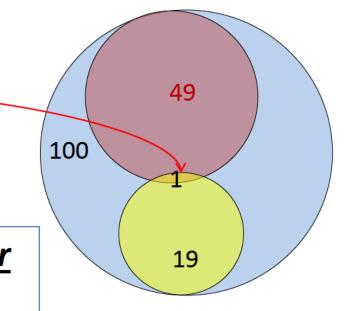


There are 17 overlapping genes. Is that surprising?





There is only one overlapping gene. Is that surprising?

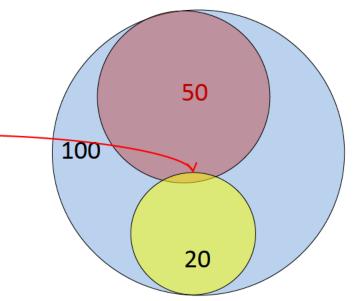


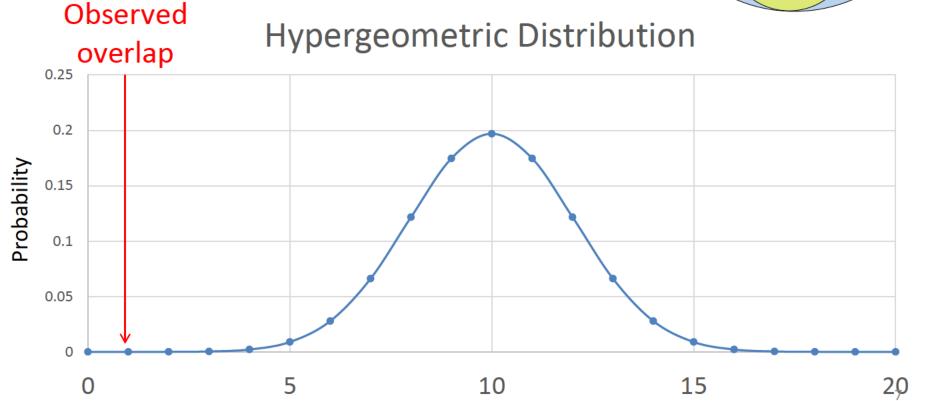
Yes! You would expect to see a <u>larger</u> overlap under the null model.

Are the yellow genes <u>enriched</u> for the red function?

No! Quite the opposite!

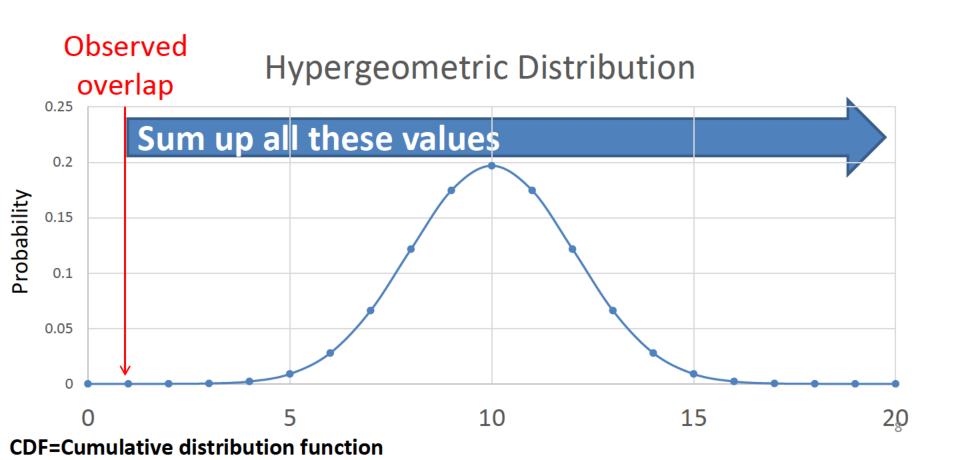
The Hypergeometric p-value is the probability of observing an exact overlap





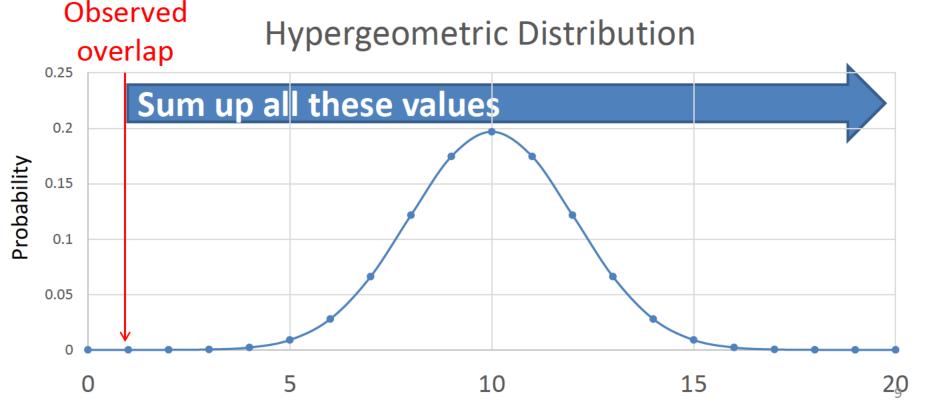
The CDF helps us find enriched terms

We want to compute the probability of observing at least this overlap under our null model.



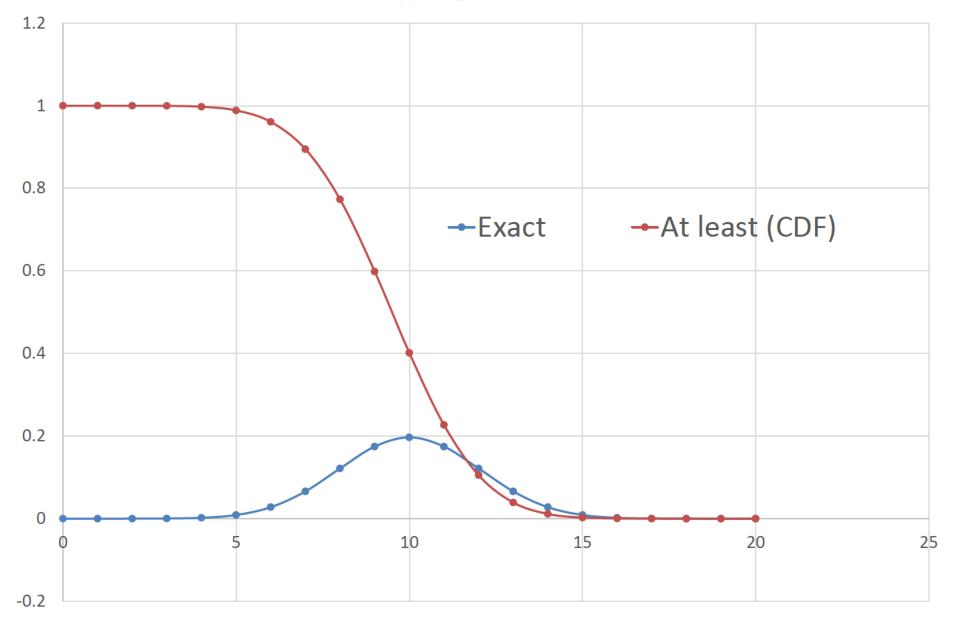
The CDF helps us find enriched terms

$$CDF(Overlap) = \sum_{n=overlap}^{Number\ of} \frac{\binom{DNA\ repair}{n}\binom{Genome-DNA\ repair}{DiffExp-n}}{\binom{Genome}{DiffExp}}$$

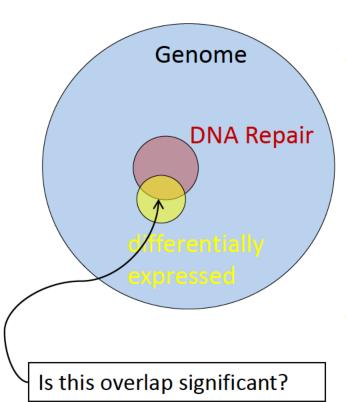


CDF=Cumulative distribution function

Hypergeometric



Statistical significance



- We wish to test if a term is "enriched" in our data.
- But the hypergeometric gives the probability of getting exactly this amount of overlap for two randomly chosen sets of genes of the same size.
 - Using the CDF, we can ask if we see <u>more</u> of a term than we would expect under the null model.

Testing Multiple Hypotheses

- Example: Filter GO terms using a p-value threshold of 0.01
- By definition, the null-hypothesis has a 1% probability of being correct <u>for each</u> <u>test.</u>
- There are roughly 30,000 terms in GO.
- At this level, we expect roughly 300 false positives!

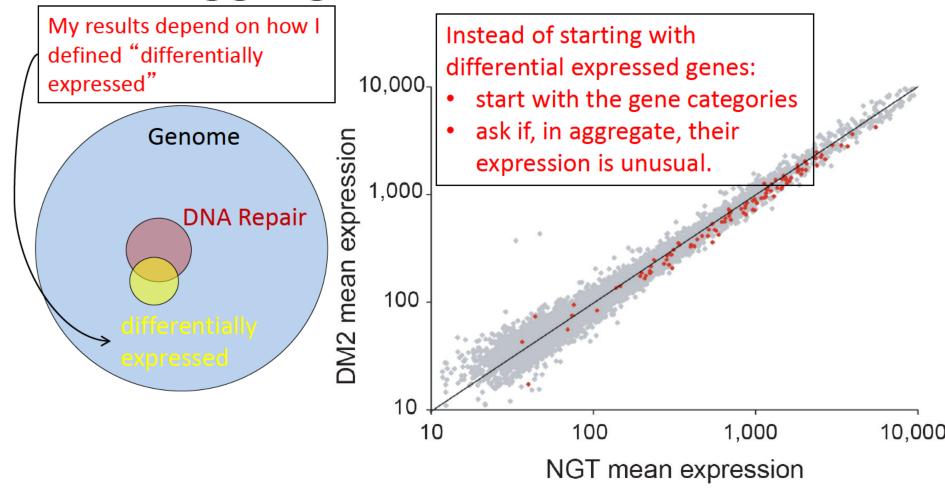
Multiple Hypotheses

- A simple solution: require that the p-value be small enough to reduce the false positives to the desired level.
- This is called the Bonferroni correction.
- In our case, we would only accept terms with a

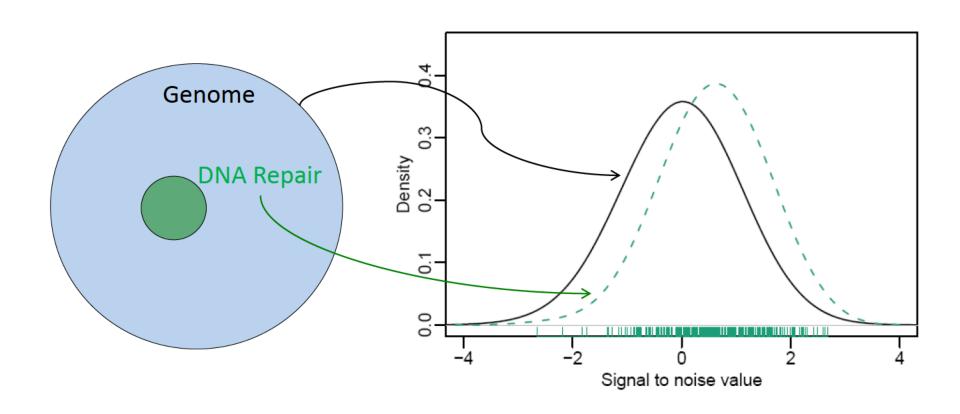
$$p \leq \frac{0.01}{30,000} = \frac{desired\ threshold}{number\ of\ tests}$$

- Since our tests are not all independent, this is very conservative, and will miss many true positives
- More sophisticated approaches exist, such as controlling the "false discovery rate".

Aggregate score statistics

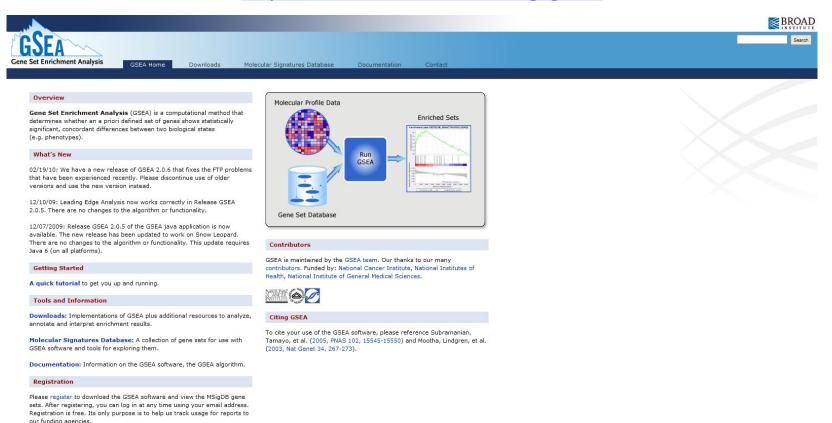


Aggregate score statistics



Aggregate score statistics

http://www.broadinstitute.org/gsea/



Learning Objectives

 To understand types and sources of biological "big data" and how they are used

Big Data Creates an Opportunity

Transcription

>2.3 million samples so far

Genomics

Analysis of protein-coding genetic variation in 60,706 humans

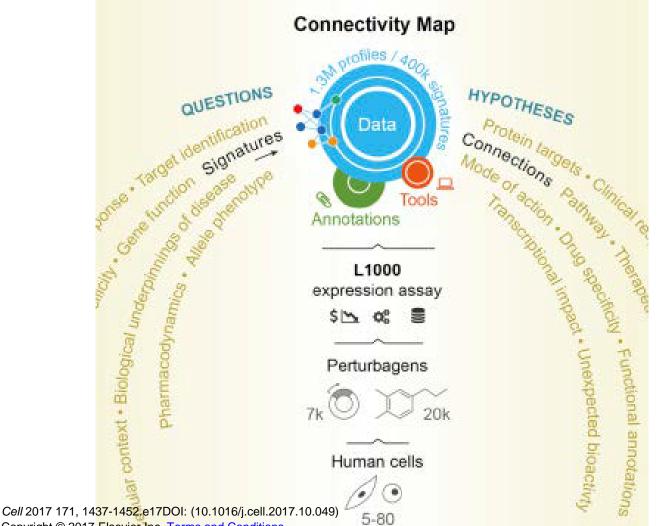
The Exome Aggregation Consortium ExAC

2.5 Petabytes
33 types of tumors
11,000 patients
7 data types

Example 1

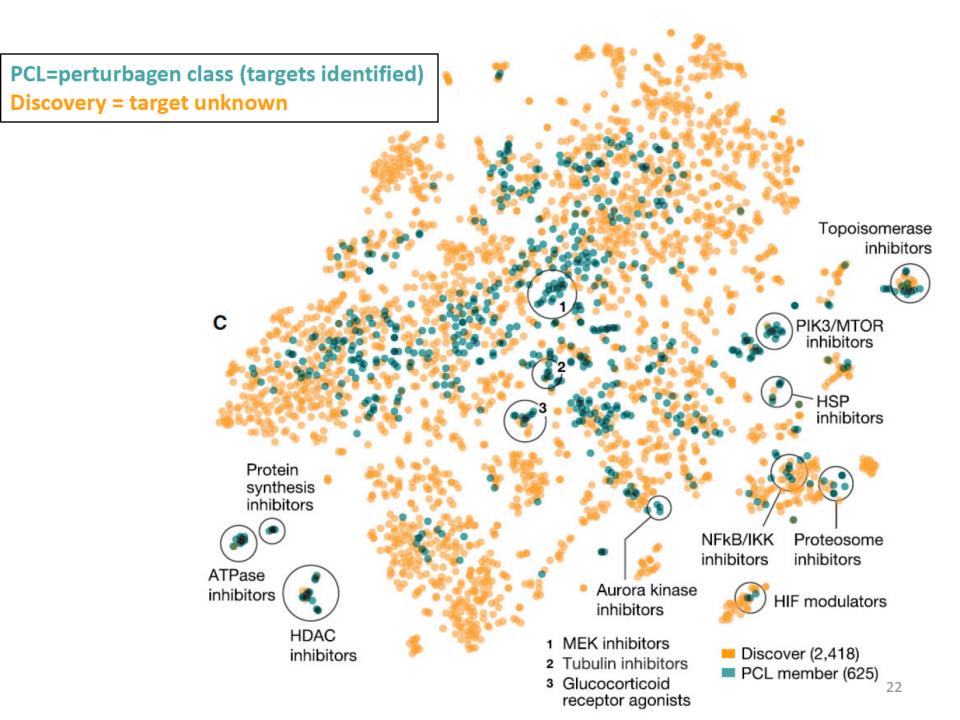
L1000: A VERY LARGE TRANSCRIPTIONAL DATASET

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles



Clustering Transcriptional Results





PCL=perturbagen class (targets identified)

Discovery = target unknown

В	BRD-5657	BRD-5161	BRD-9186	
н,с но		NH OH O		PIK3/inhib
Affinity	OH	CH	_/	innik
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kD (nM)	kD (nM)	kD (nM)	
to target AKT1	kD (nM) > 10,000		kD (nM) > 10,000	
to target		kD (nM)		
to target AKT1	> 10,000	kD (nM) > 10,000	> 10,000	
to target AKT1 MTOR	> 10,000 87	kD (nM) > 10,000 1,900	> 10,000 2,600	
to target AKT1 MTOR PIK3CA	> 10,000 87 680	kD (nM) > 10,000 1,900 95	> 10,000 2,600 7,200	

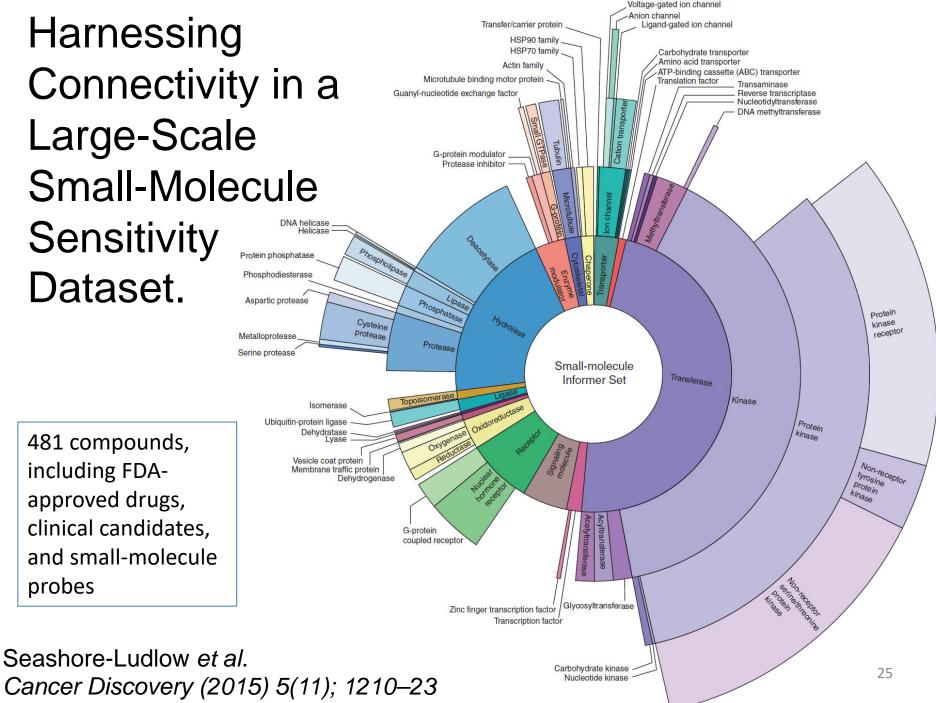
Example 2

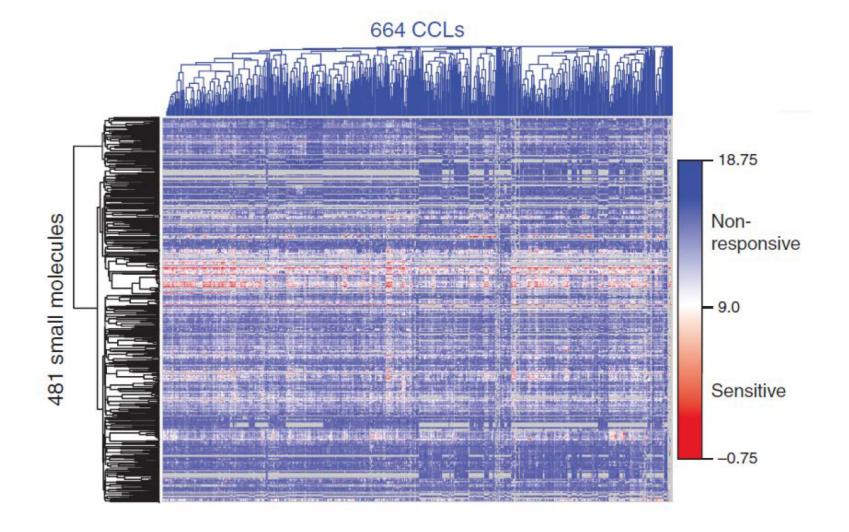
A VERY LARGE SENSITIVITY ASSAY

Harnessing Connectivity in a Large-Scale **Small-Molecule** Sensitivity

481 compounds, including FDAapproved drugs, clinical candidates, and small-molecule probes

Dataset.

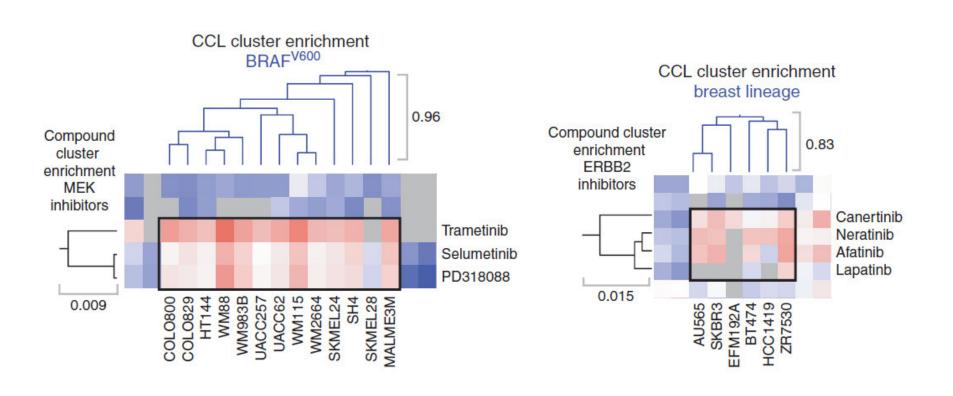




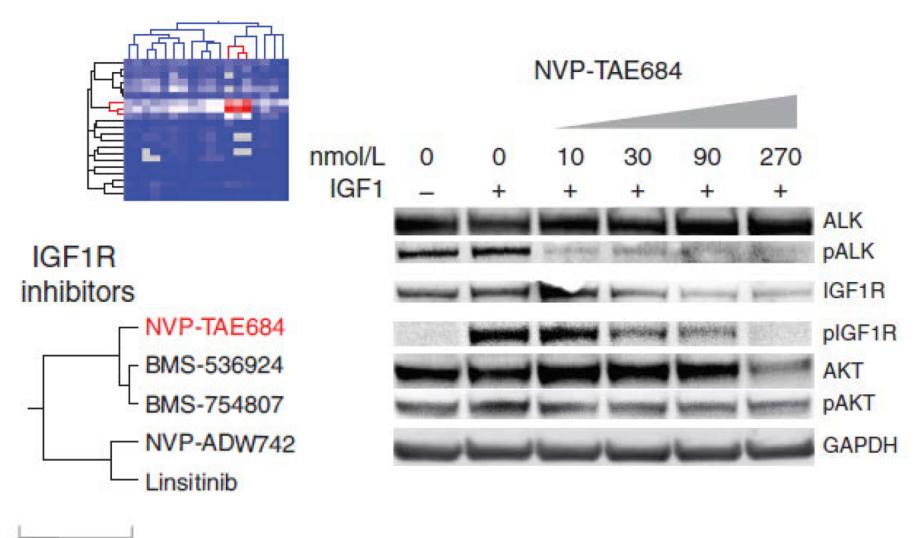
The 481 compounds were tested at 16 concentrations in duplicate against 664 cancer cell lines.

DOI: 10.1158/2159-8290.CD-15-0235 NOVEMBER 2015 CANCER DISCOVERY

Cluster often represent common sensitivity to a mechanism

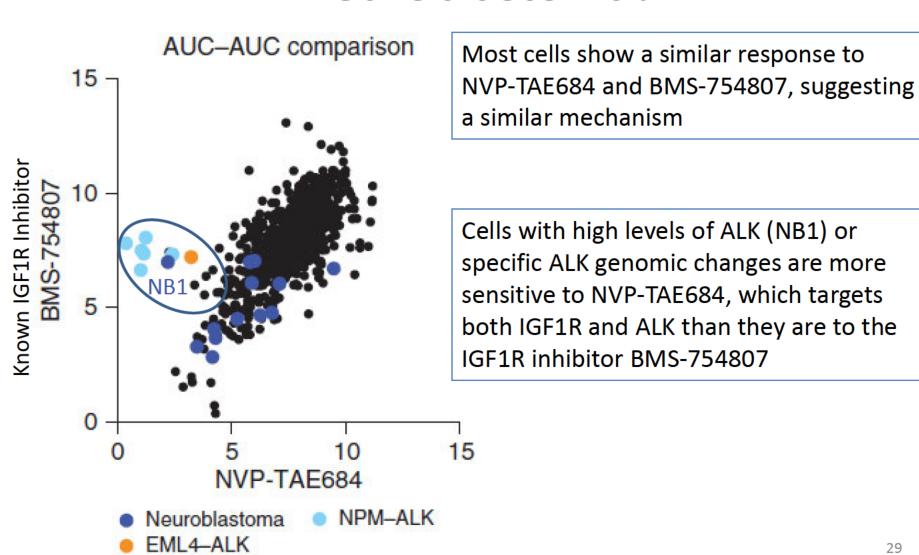


Discovery of new way to target neuroblastoma?

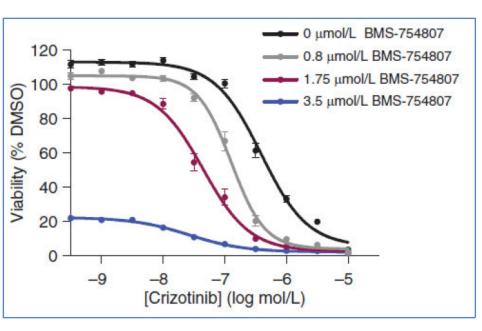


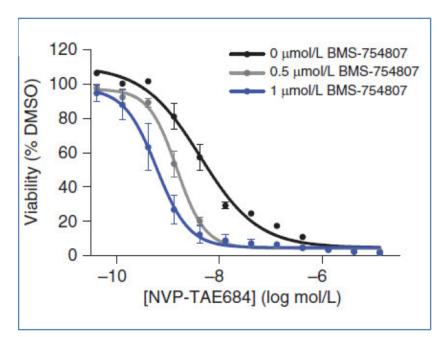
0.26

Discovery of new way to target neuroblastoma?



NB1 responds to a combination of ALK and IGF1R inhibitors

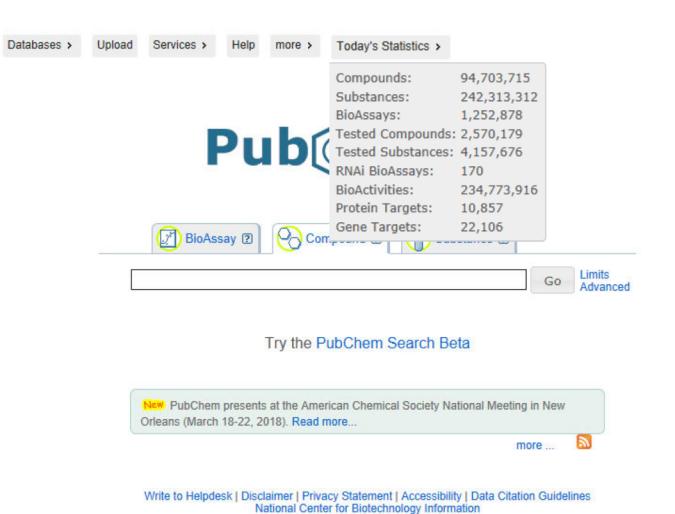




Known ALK Inhibitor

Example 3

PUBCHEM: A DATABASE OF CHEMICAL COMPOUNDS



NLM | NIH | HHS

▶ Cite this Record

Tae-684

16038120 PubChem CID:

NVP-TAE684; 761439-42-3; NVP-TAE 684; TAE684; TAE-684; 5-chloro-N4-(2-(isopropylsulfonyl)phenyl)-N2-(2-methoxy-

Chemical Names: 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)pyrimidine-2,4-diamine More...

Molecular Formula: C₃₀H₄₀CIN₇O₃S

Molecular Weight:

614.206 g/mol

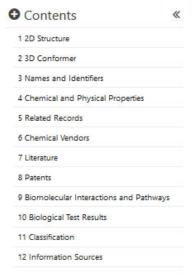
InChl Key: QQWUGDVOUVUTOY-UHFFFAOYSA-N

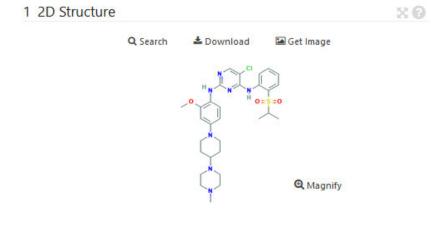
Substance Registry: FDA UNII

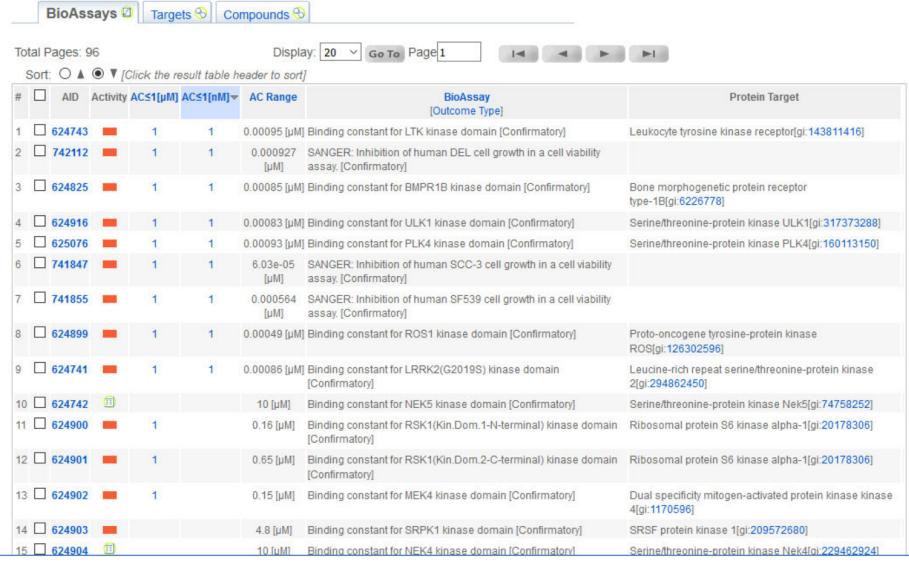
PUBCHEM > COMPOUND > TAE-684

Modify Date: 2018-03-17; Create Date: 2007-04-09

▶ from PubChem





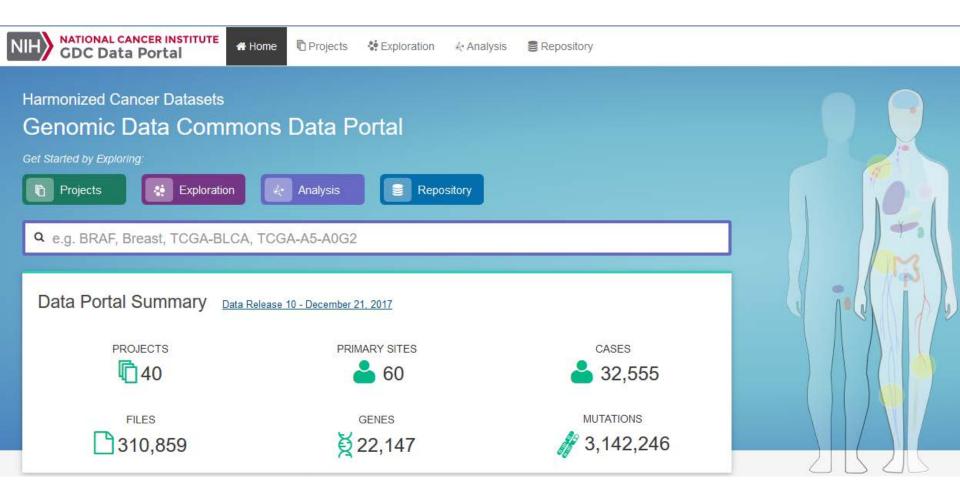


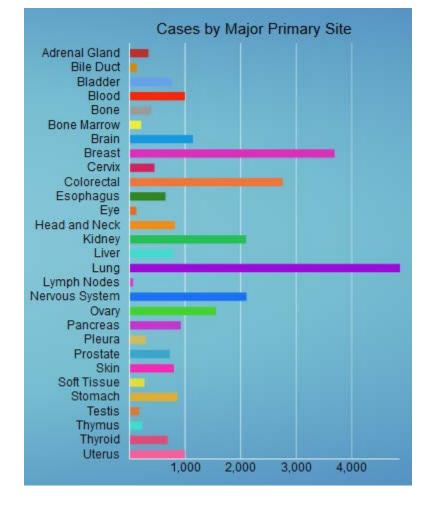
Targets with Kd or IC50 below 10nM:

ABL1 ALK BMPR1B DCLK1 EGFR FER FES FLT3 GAK IGF1R INSR INSRR LRRK2 LTK NUAK2 PLK4 PTK2 PTK2B ROS1 STK33 TNK1 TNK2 ULK1 ULK2 YES1

Example 4

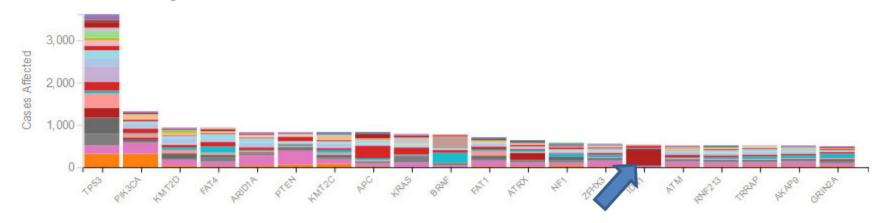
TCGA: MULTI-OMIC TUMOR DATA





What questions might you ask using these sequencing data?

Top Mutated Cancer Genes



⊞ Summary		Project	Disease Type	Site	# Affected Cases
		TCGA-LGG	Brain Lower Grade Glioma	Brain	394 / 510 (77.25%)
Symbol	IDH1	TCGA-CHOL	Cholangiocarcinoma	Bile Duct	<u>6</u> / <u>51</u> (11.76%)
		TCGA-LAML	Acute Myeloid Leukemia	Bone Marrow	13 / 144 (9.03%)
Name	isocitrate dehydrogenase 1 (NADP+), soluble	TCGA-GBM	Glioblastoma Multiforme	Brain	<u>26</u> / <u>393</u> (6.62%)
Synonyms	-	TCGA-SKCM	Skin Cutaneous Melanoma	Skin	<u>22</u> / <u>469</u> (4.69%)
oymonymis		TCGA-UCEC	Uterine Corpus Endometrial Carcinoma	Uterus	20 / 530 (3.77%)
Туре	protein_coding	TCGA-BLCA	Bladder Urothelial Carcinoma	Bladder	9 / 412 (2.18%)
Location	chr2:208236227-208266074 (GRCh38)	TCGA-LIHC	Liver Hepatocellular Carcinoma	Liver	7 / <u>364</u> (1.92%)
Location		TCGA-COAD	Colon Adenocarcinoma	Colorectal	7/400 (1.75%)
Strand	-	TCGA-PRAD	Prostate Adenocarcinoma	Prostate	5 / 498 (1.00%)

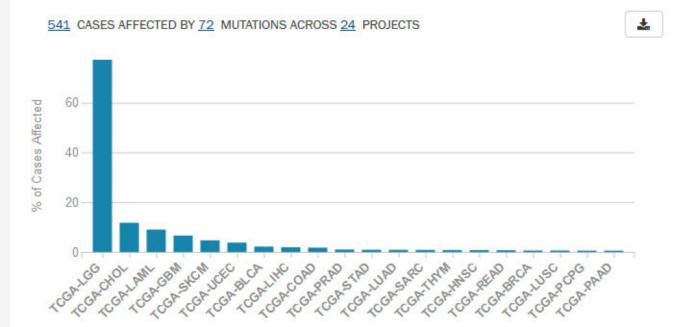
Description Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which utilizes NAD(+)

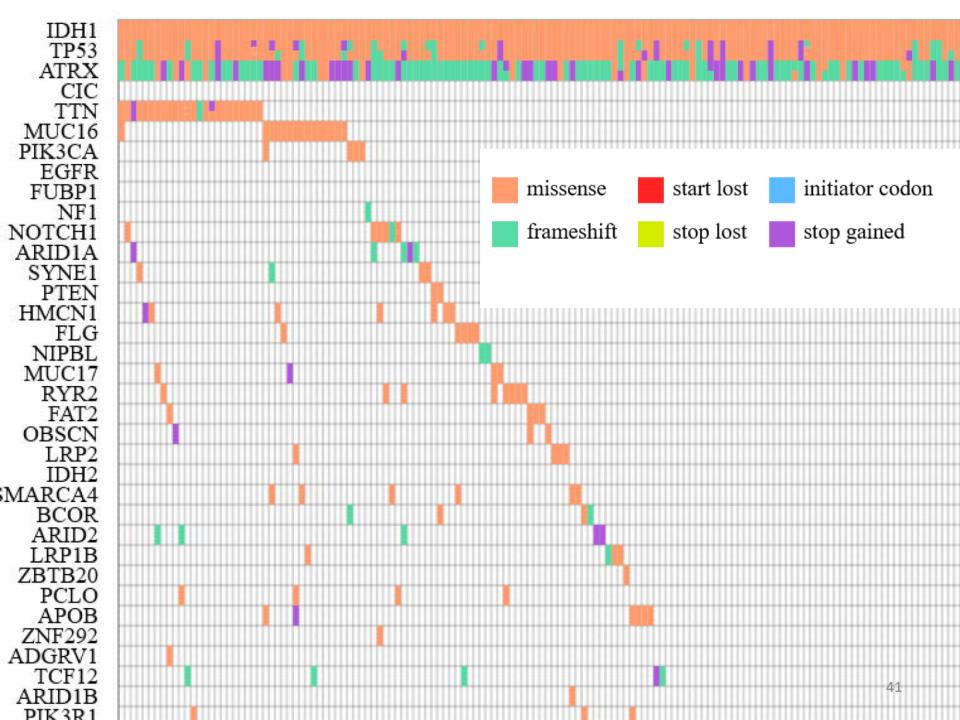
as the electron acceptor and the other NADP(+). Five isocitrate dehydrogen...

▼ more

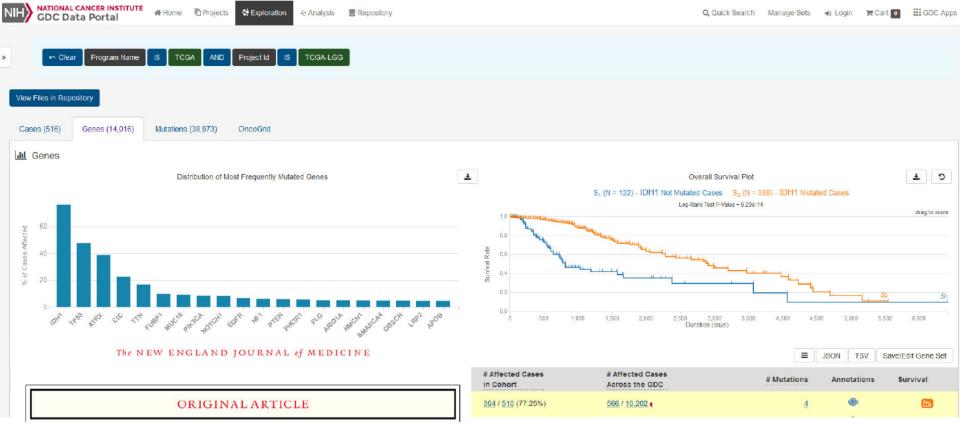
Annotation Cancer Gene Census

III Cancer Distribution







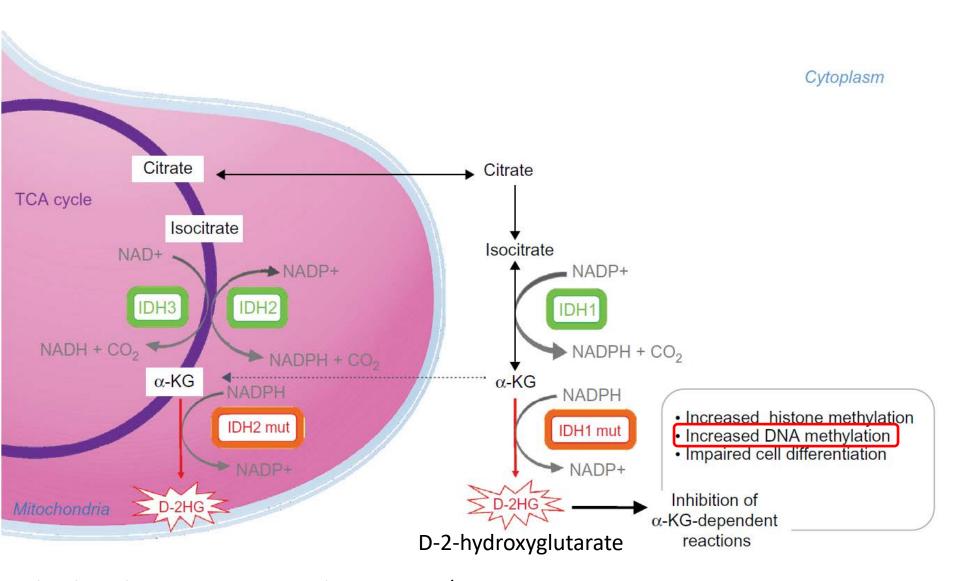


IDH1 and IDH2 Mutations in Gliomas

N ENGL J MED 360;8 NEJM.ORG FEBRUARY 19, 2009

RESULTS

We identified mutations that affected amino acid 132 of *IDH1* in more than 70% of WHO grade II and III astrocytomas and oligodendrogliomas and in glioblastomas that developed from these lower-grade lesions. Tumors without mutations in *IDH1* often had mutations affecting the analogous amino acid (R172) of the *IDH2* gene. Tumors with *IDH1* or *IDH2* mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type *IDH* genes. Each of four tested *IDH1* and *IDH2* mutations reduced the enzymatic activity of the encoded protein.



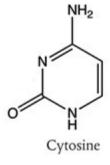
J Blood Med. 2016; 7: 171–180 doi: 10.2147/JBM.S70716
IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives

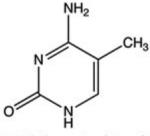
Many Types of Data Available

Summary

Project ID	TCGA-LGG
Project Name	Brain Lower Grade Glioma
Disease Type	Brain Lower Grade Glioma
Primary Site	Brain
Program	TCGA

Data Category	Cases (n=516)	Files (n=12,603)	
Raw Sequencing Data	<u>516</u>	2,105	
■ Transcriptome Profiling	516	2,647	
Simple Nucleotide Variation	513	4,248	
Copy Number Variation	<u>514</u>	2.038	
■ DNA Methylation	<u>516</u>	<u>534</u> I	
■ Clinical	<u>515</u>	<u>515</u> I	
Biospecimen	<u>516</u>	<u>516</u>	





5-Methylcytosine (5-mC)

Step 1

Denaturation

Incubation at 95°C fragments genomic DNA

Step 2

Conversion

Incubation with sodium bisulfite at 65°C and low pH (5-6) deaminates cytosine residues in fragmented DNA

Step 3

Desulphonation

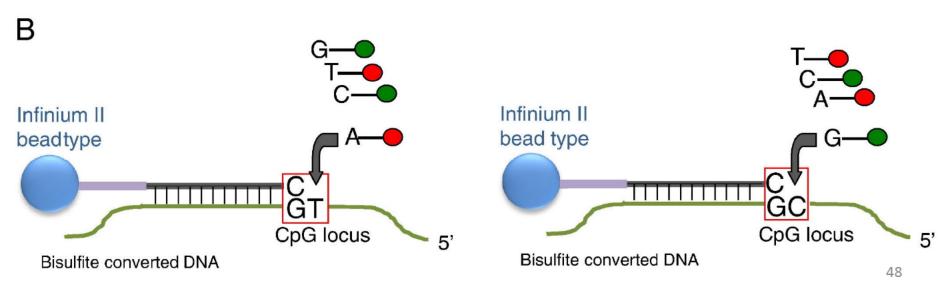
Incubation at high pH at room temperature for 15 min removes the sulfite moeity, generating uracil

5-Methylcytosine (5-mC)

5-mC and 5-hmC (not shown) are not susceptible to bisulfite conversion and remain intact

Unmethylated locus

Methylated locus



https://doi.org/10.1016/j.ygeno.2011.07.007

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 25, 2015

VOL. 372 NO. 26

Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas

The Cancer Genome Atlas Research Network*

CpG Island

