

Within-Slide Normalization

- Normalization balances red and green intensities.
- Imbalances can be caused by
- Different incorporation of dyes
- Different degradation of dye
- In practice, we usually need to increase the red intensity a bit to balance the green

Let's begin the normalization process:

Calculating Differences in Gene

$x \cup 8=\log (122)$										
${ }^{5} 5$ Probenam Ga		dans	Meciansing	BGMedial	Modat					
A.06	1.0 ct YkI 40		301	${ }^{73}$	${ }^{84}$	1355	217	${ }^{127} 6877$		= $\log (12.2)$
15 A-06-P45	at YKL 40	325	263.5	60	${ }^{80}$	265	1835	107.9412	0.407325	
		1919	${ }^{2029}$	10	${ }^{83}$	1849		${ }^{1144.706}$	95	
	mashe	1	211	at	${ }^{2}$					
	Yeroesw		111.5	${ }_{6}^{65}$	${ }^{32}$	${ }^{76}$		17.35294	${ }^{228328}$	
6119 A .06 P P13 ACC 3	Yeroses	95.5	1025	S	${ }^{81}$	31.5	215	1264706	401948	
1626 _ 066 P43 4 A AD 10	Y,R155N	${ }^{223}$	135	${ }^{87.5}$	${ }^{34}$	135.5			0.21442	
1626 A 06 Pp+3 AADCD	Y,R155N	1700	${ }^{604.6}$	${ }_{68}^{72}$	${ }_{8}^{83}$	1628 162	521.5	306.7647	0.18843	
	YMI331C	${ }^{235}$	117	${ }^{68}$	${ }^{83}$	${ }^{167}$	${ }^{34}$	11720	${ }^{11979}$	
${ }^{2093}$ A 066 P63 ${ }^{\text {A A ODI }}$	YOL175C	103	102	${ }^{65}$	${ }^{83}$	${ }^{38}$		11117647	0.29418	
$5^{58399.06-P 1 / ~ M A O 3 ~}$	YCRTONT	${ }^{242}$	${ }^{216}$	14	${ }^{84}$	${ }^{168}$	${ }^{132}$	11.67476	${ }^{462185}$	
1459 A 06.19 AAD	YDL23C	113	94	69	${ }^{34}$	44		6823	0.13369	
${ }^{14599} .06$ P19 AAO4	Yol2asc	282	395	12	${ }^{83}$	210	312	18352294	${ }^{0.87396}$	
	YFLOS6C	2155	163	62	\%	25		2823529		
51164.06 .823 AADG	YFLO56C	${ }^{3314}$	270	67	81	247		17.1765	500107	
	YNH111W	${ }^{2358}$	164	4	${ }^{5}$	4.74		, 7 . 51895		
${ }^{2554} 40$ A		198	253	${ }_{77}$	${ }^{5}$	14		88253		
629 A.	0	529	250		${ }^{2}$			\% 822353		
	YHRP47C	${ }_{626}$	2123	${ }_{63} 63$	${ }^{3}$	563	2040	1220	2.131439	
6191 A 066 P12 A AR2 2			Calculate log2 ratio of each channel ${ }_{384}^{199}$							
3821 A O6 P45 A AT1	120 N	636								
3821 A. 06 P445 AAT1	YKL1006	280.5								
${ }^{3537}$ A 06.548		6453	6925	${ }^{67}$	${ }^{34}$	6386		${ }^{4024.118}$	147	
4971 A 06.830 ABC1	1196	400	4595	70	${ }^{36}$	3305		2197059		
4971 . 06 P30 ABC1	YGL119W	220	184.5	63	${ }^{11}$	157	1035	60.88235	387786	
6019 _-66.P14 ABD1	YBR236C	3625	575	${ }^{7}$	${ }^{83}$	2875		2894118	65	
6019 _-66P14 AED1	Yer236C	43	930	68	82	105		498.8235	1231663	
${ }^{187}$ A 066 P45 A AFP 1	YKL112W	${ }^{13071,5}$	176	11	${ }^{83}$	${ }^{1236.5}$		${ }^{547} 70588$	044243	
187 A 06 P45 A A FF 1	YKlitew	4147	409	${ }^{76}$	${ }^{87}$	4071	322	1894418	0046527	
${ }^{2946}$ A 06.5 P5 A A F 2		7880.5	12876	71	${ }^{35}$	7817.5	12791	7524 118	. 962471	
	YMROT?	5054	319.5	6	${ }^{83}$	${ }^{1987}$	2365	${ }^{2256165}$	${ }^{\text {B535372 }}$	
	YRRIOBM	198	331		${ }^{83}$	${ }^{112}$		${ }^{12588824}$		
	YCRO88W	${ }_{1150.5}^{225.5}$	${ }_{9027}^{50,7}$	${ }_{71}^{68}$	${ }_{83}^{84}$	1079.5	${ }_{8993}$	${ }_{5}^{257.329}$	${ }_{4}^{1.50049877}$	

$8=106\left(1 M_{2}, 2\right)$										
c ${ }^{\text {b }}$		F	${ }^{6}$			J	k	1	M	N
beat Probevam Gerenlame	Systr matiog	lediansin	Meciansing	GGMedia	SMedatg	d	red correted	dod normal		
34_ 06. Pr P 2 ARR3	YPR Piw		82.5	65		7	0.5	. 028412		WNOM?
	YIR ${ }^{\text {a/w }}$	${ }^{117}$	${ }^{64}$	${ }_{6}^{72}$	85 83	${ }_{45}$		${ }^{0} 0.58824$	0.005837	\#vile
		82.5	81.5	${ }^{66}$	${ }^{83}$	16.5	- 15	0.88235	0.05348	${ }^{89}$ \# \#VMM
${ }^{53255}$	YELO33C		${ }^{467895}$		${ }^{84}$	${ }^{632}$		2787718	13.46705	
	YELO39C	${ }^{835}$	${ }^{33057}$	${ }^{80}$	${ }^{88}$	${ }^{005}$	${ }^{32969}$	1939353	34.0114	59943
${ }^{3030}{ }^{30606 ~ P 54 ~ C O O S ~}$	YM. 110 C	311	5003	${ }_{88}$	${ }_{8}^{83}$	${ }_{7}^{241}$	4932	2894.18	${ }^{200089}$	
	YMC 110 C	${ }^{785} 5$	${ }_{5}^{1925}$	68 68	${ }^{87}$	${ }^{7175}$	${ }_{17838} 18$	${ }^{66577529}$	${ }_{9} 9702525284$	- 3.2787868
	YGPR122N	1860	${ }^{27399.5}$	63	${ }_{84}$	${ }_{1797}$	27305	1606206	8.93826	${ }^{3.159995}$
5133 A 06. P28 ACT1		310	3522	${ }^{7} 4$	84	236				
1373 A 06 P68 CAR1	111w	350	3347.5	82	${ }^{34}$	268	37335	2213824	10536	
1322 A 0. 06 P70 AP20		333.5	3349.5	${ }_{88}^{88}$	82				12916	
2334 A -06-P61 COS1	YM1330w	355	3665	77	${ }^{3}$	278		059		
443 A 06 P15 ARO4	YBr249C	24	2242	67	${ }^{83}$	177	2159	1270	175141	${ }^{84}$
2686 A.06. P5 7 ASI3	YMTOOSC	96.5	422.5	68	${ }^{84}$	28.5	338.5	9.176	986584	
2334 A. 06. P66 Cos 1	Ynl3330w	405	4089	62	${ }^{82}$	343		235059	871892	2780707
4476 A.06 P37 DSE2	YHR143W	521	5193	61	${ }^{80}$	450	5113	3007647	658836	
	YLu11w	298.5	30833	11	${ }^{85}$	28775	303985	788147	625773	264564
443 _ 066 P15 ARO4	YBr2asC	${ }^{373}$	3333	65	${ }^{4}$	${ }^{308}$	3249		205118	2.63459
	YGR142T	184	7470	81	${ }^{88}$	103	1382	4342363	.17689	
717 A 06.827 DSE1	YER124C	${ }^{113}$	580	64						
${ }^{426}$ A 0.06 P39 Coxs	YLL111W	${ }^{122225}$	${ }^{124925}$	64	32	What	appened	4	972445	2571057
	YARROLSW	5921	${ }_{4337} 8$	${ }_{65}^{63}$	${ }_{83}^{82}$	${ }^{471}$	4254	2502353		2.53772
$1204 \mathrm{~A}^{-0.06-P 28 ~ C 0 S 4}$	YFL062W	1152	9555	73	${ }^{3}$	1079	20			
1332 a 06. PTO ATP 20	YPRR2OW		6310	6			5226			62366778
${ }^{4} 5650 A^{-066-P 36 D 062}$	YHRP43C	3805	2342	${ }_{64}^{64}$	${ }^{84}$	${ }^{2665}$	2328	8 1369412	513856	2361399
	YeReric	1251	${ }^{2122025}$	69	${ }^{2}$	1145		7236276		${ }^{329}$
5894 AOO	YCRROSCN	11535	124025	69	${ }^{83}$	10765	12398			
${ }^{3789 A}$ A 06 P44 COS5	Y,R161C	${ }^{1134.5}$	4782.5	72	${ }_{85} 8$		46775	2751.471	4.891503	220278
4476 A -06_P37 DSE2	YHR143W	${ }_{1127}$	8722	68	${ }_{84}$	1059	8638	的		225246
$4009 \mathrm{~A} .06 \mathrm{P}+2 \mathrm{CYCl}$	YUROASW	1537	11629	${ }^{73}$	${ }^{99}$	${ }^{1454}$	11539			2212996
	${ }_{\text {YAROOLS }}$	${ }_{4}^{607}$	${ }^{4250.5}$	${ }_{65}^{65}$	${ }_{81}^{82}$	${ }_{123}^{542}$	41685 3215			${ }_{6}^{4} 21.1765254$
47A0. ${ }^{\text {a }}$	YBR156W		${ }^{3296}$	${ }_{6}^{63}$				1881176		${ }^{2}$

\& log2 1 ed ds green										
robelil Probevam Gerenlame	Systernatiog	Mediars	Iheciansing	OMediar	GMedar	green correted	correted rod	red nommal		
${ }^{1134} 40.06$ PT2 ARR3	YPR2007w		82.5	${ }^{65}$	${ }^{83}$	7		0.29418	0.020207	${ }^{4} 57285$
${ }^{24355}$ A 06. P5 51 CDA 2	YIR303\%	117	84	${ }^{72}$	${ }^{85}$	45	05	0294118	0.006536	725739
		82.5 698	81.5	${ }_{66}^{66}$	${ }^{83}$	16.5	0.5	0234118	0.017825	${ }_{5}^{580993}$
	YELO33C	${ }_{895}^{698}$	${ }^{46785}$	${ }_{80}^{66}$	- $\begin{gathered}84 \\ 88\end{gathered}$	${ }_{305}^{632}$	${ }_{3}^{4} 47909$			
${ }^{5325}$ A. 06. P225 CYC7	YELO39C	835	${ }^{33057}$	${ }_{70}^{80}$	${ }^{83}$	${ }^{805}$	${ }_{4}^{32969}$	${ }_{2}^{19393953}$	20	59
	YM. 1100 C	${ }^{311}$	6033 11925	70 68	${ }_{8}^{83}$	${ }_{1715}^{241}$	${ }_{1}^{4920}$	${ }_{6}^{28943} 118$	${ }^{200879}$	
	YKROP3 ${ }^{\text {a }}$	98	${ }_{5} 595$	${ }_{68}^{68}$	${ }_{8}^{87}$	7175 30		6963529 277058	92952524	${ }^{3}$
$4756 A^{06}$ P33 BiTN 2	YGR142\%	1880	27389.5	${ }^{6}$	${ }_{84}$	1797	273055	1606206	8.988263	
5133 A 06. P28 ACT1	YFL039C	310	3522	${ }^{7} 4$	${ }^{4}$	236	3438			
1373 A 066 P68 CAR1	.111w	350	3347.5	82	${ }^{4}$	268	37635	2213.824	260536	
1322 A 0. 6 - P70 AP20		333.5	3349.5	${ }^{88}$	82	245.5	32267		82916	
2334 A.06 P661 Cos 1	YM1335W	355	3665	T	${ }^{83}$	278	3682	10705		
43 A 06 P P15 ARO4	YBr2asC	24	2242	67	${ }^{83}$	177	2159	1270		2.4
${ }^{2686}$ A_06. P57 ASI3	Yruoosc	96.5	422.	68	- ${ }^{84}$	${ }^{29.5}$	338.5	199.11		
2334 A.06. P61 Cos 1	L3350w	405	4069	62	82	343	4007			2780
4476 A 06 P37 DSE2	R143W	${ }_{521}$	5193	${ }^{61}$	-800	450	5113	3007647		270989
	Yilliw	29285	304835	71	${ }^{85}$	2857.5		1788147	${ }_{6}^{6257732}$	${ }^{2635654}$
	YGRR42W	${ }_{784}^{373}$	${ }_{7}^{3337}$		${ }^{88}$	${ }_{703}{ }^{308}$		${ }_{134212363}^{19176}$	${ }_{6.178889}^{620514}$	${ }_{2628}$
T17 A $066_{[}$P27 DSE1	YERT24C			64						
	$\underset{\substack{\text { YLIT1W } \\ \text { YFLOCOW }}}{ }$	1222.5 921	${ }^{124925}$	${ }_{63}^{64}$	${ }_{82}^{82}$	Correct	for nega	gative	inten	nsity
${ }^{6254}$ A - 06 P P1 A A E 1	YAROISW	5365	4337	${ }_{65}$	${ }_{83}$	4715	4254			
${ }^{12244}$ A 06.828 P Cos4	YFLOCO2W	1152	9555	73	${ }^{83}$	1079	9472	5571.765	5.16323	
1322 A .06 PPTOAPTP20	YPRR2OW	663	${ }_{5}^{5310}$	${ }^{67}$	${ }^{84}$	596	${ }^{5226}$			${ }^{356788}$
	YGL137C	${ }_{1204}$	${ }^{23212.5}$	${ }_{63}^{64}$	${ }_{82}^{84}$	${ }_{1141}^{2665}$	${ }_{9}^{23765}$	${ }_{5}^{136939235}$		2303239
717 A 066 P27 OSE1	YERR24C	1534	124225	69	${ }^{84}$	1465				
5884 A 06. P17 ABP 1	YCRRO6OW	11505	${ }^{9076}$	71	${ }^{83}$	${ }^{10795}$	6993			229294
${ }^{3189 A}{ }^{3606 ~ P 44 ~ C O S 5 ~}$	YMR161C	${ }_{1127}^{634}$	${ }_{87225}^{4782}$	${ }_{68}^{12}$	${ }^{85}$	$\begin{array}{r}\text { ¢ } \\ 1059 \\ \hline 1059\end{array}$	${ }_{8638}^{1675}$	${ }_{5081}^{221476}$		
4009 A 060 P42 CYC1	R048W	1537	11628	${ }_{73}$	${ }_{89}$	1464	111539	787.647	4.536371	2.212396
6244 a 06 P11 ADE 1	YAR015W	607	+250	65	${ }^{82}$	542				
	1 158\%	436	329	63	${ }_{81}$		3215	891	866	160

And NOW to the fun.

- How many genes were differentially expressed between your 2 samples?
- Was the expression of your gene of interest significantly changed between the two samples?...can we assess this directly

Distribution of log2 ratios

- What are we expecting????
- What color would all of these spots be??

Trends in Data

- How many changes do you see?
- What could these changes mean?
- How can we find out more about these genes and their functions?
- Which biological processes are upregulated, down-regulated, no change?

