M2D8: Cell viability, quantitative PCR,

 identification of regulatory motifs1. Treat cells with DNA damaging agents and inhibitors for cell viability
2. Analyze qPCR results
3. R: Identify regulatory motifs in RNA-seq data

Extra (+ usual) Office Hours Next Week

- Tuesday April $17^{\text {th }} 56-322$ (lab):
- 10:30am-1:30pm (Leslie)
- 2:00pm-5:00pm (Noreen + Josephine's regular hour)
- Wednesday April 18 ${ }^{\text {th }}$ 56-322 (lab):
- 10:00am-1:00pm (Josephine)
- 2:00pm-4:00pm (Noreen) 4-5pm (Leslie)
- Thursday April 19 ${ }^{\text {th }}$ (56-341c), 10-11am (Josephine)
- Friday April $20^{\text {th }}$ (56-341c), 4-5pm (Leslie)

Mod2 Research Report (20\% of final grade)

Due Saturday $4 / 21$ at 10 pm

- Title, Abstract
- Introduction
- Methods
- Results (Figures and captions)
- Discussion
- References

Last week of Mod2!

DAY 4: Evaluate altered gene expression
DAY 5: Investigate public databases
DAY 8: Identify regulatory motifs

DAY 9

Etoposide is a drug/chemotherapy that causes DNA double strand breaks

- Mechanism of action: forms ternary complex with DNA and topoisomerase II enzyme, prevents re-ligation of the DNA strands
- Cancer cells (quickly dividing cells) rely on topoisomerase II more than normal cells

Topo Type II = topoisomerase II enzyme

Ma, J. \& Wang, M.D. Biophys Rev (2016) 8(Suppl 1): 75. https://doi.org/10.1007/s12551-016-0215-9

Measuring synthetic lethality in our parental and BRCA2-/- cell line

What is synthetic lethality?
combination of deficiencies (eg. knockout, LOF, drug) in 2 or more genes resulting in cell death. One deficiency alone does not cause death
What parallel pathways are we perturbing in this experiment?

$$
\begin{aligned}
& \text { DSB } \rightarrow H R \text { (BRCA2-1-) } \\
& \text { NHEJ (Loperamide, Mibifradil) }
\end{aligned}
$$

What is the result we will assess?
cell viability: cell titer glo-measures ATP via luminescence

Six compounds identified that target

 NHEJ and / or HR $\quad=$ =amson ac ctracel $0=$ total loss ofRepair activity activity

	Repair activity	
Drug name	NHEJ	HR
Pimozide	0.28	0.55
Loperamide	0.20	0.57
\rightarrow Mibefradil	0.28	0.57
Etoposide	0.65	0.08
SR 59230A	0.27	0.58
AMNO82	0.19	0.92

- Loperamide = slows contractions of intestines, treatment for gastrointestinal ailments
- Mibefradil = blocks calcium channels, treatment for heart conditions

Synthetic lethality part 1: experiment overview

1. Choose miberfradil or loperamide, sign up at front bench
2. Induce double strand breaks (etoposide $37^{\circ} \mathrm{C}$ for 60 min)
3. Remove etoposide media and incubate with appropriate concentration of miberfradil or loperamide till M2D9

qPCR (quantitative PCR) is used to detect and quantitate gene expression

- Fluorescence is a function of dSDNA concentration via SYBR green dye
- Initial DNA concentrations are proportional to RNA purified from cells (from which we made cDNA)
- We can compare expression of a particular gene in different conditions by measuring the abundance of the gene-specific transcript
- Expression of the gene of interest is normalized to a housekeeping gene, \qquad GAPDH

Calculate relative amounts of cDNA based on threshold cycle (C_{T})

Calculate relative amounts of cDNA based on threshold cycle (C_{T})
Goal: Find relative expression of p21 to GAPDH $=\frac{[\mathrm{p} 21 \mathrm{mRNA}]}{[\text { GAPDH mRNA }]}=\frac{[\mathrm{p} 21 \mathrm{cDNA}]_{0}^{2}}{[\mathrm{GAPDH} \mathrm{cDNA}]_{0}}$
CDNA concentration
Assuming perfect exponential amplification during each cycle of PCR:
${ }^{y}[\mathrm{p} 21]=[\mathrm{p} 21]_{0} * 2^{\text {cycle\# }}$
$[$ GAPDH $]=[\text { GAPDH }]_{0} * 2^{\text {Cycle\# }}$

- Fluopercence α [dSDNA]
at $G_{T},\left.\quad[P 21]\right|_{G P 21}=\left.[$ GAPDH $]\right|_{C T G A P D H}$
- ©CT, \approx fixed [dSDNA]

$$
\begin{aligned}
{[\text { P2I }]_{0} \times 2^{C_{T P 21}} } & =[\text { GAPDH }]_{0} \times 2^{\text {GGAPDH }} \\
\downarrow & {[\text { [P21 CDNA }]_{0} } \\
{[\text { GAPDH CDNA }]_{0} } & =2^{\left(C_{\text {TGIPDH }}-C_{\text {TP21 }}\right)}=2^{-\left(C_{\text {TPLI }}-C_{\text {TGAPDH }}\right)}
\end{aligned}
$$ assuming similar lengths

qPCR melt curve indicates the number of dsDNA products in reaction

Negative derivative of fluorescence vs. temperature

What would cause multiple peaks?
multiple products
\rightarrow primers created off-farget product, sequence similar
\rightarrow accidentally put multiple primer pairs for different genes in same well
\rightarrow Splice variants

Computational exercise—transcription factor binding site motifs

- Calculate position weight matrices
- Search public database of transcription factor binding
- Scan sequences to look for matching motifs
- Practice expectation-maximization algorithm for de novo motif discovery

Today in lab

1. Drug treat cells in tissue culture:
$-\quad 1^{\text {st }}:$ Pink, Purple, Platinum

- $\quad 2^{\text {nd }}$:Red, Orange, Green, Blue

2. Analyze qPCR data
3. Complete "Transcription Factor Motifs" R exercise

HW due M2D9:

- Create figure of qPCR analysis with related RNA seq data (plot of p21 expression in various conditions), including figure title and caption
- Associated results section
- Associated discussion section

