Thermal Forces and Brownian Motion

Ju Li

GEM4 Summer School 2006
Cell and Molecular Mechanics in BioMedicine August 7-18, 2006, MIT, Cambridge, MA, USA

Outline

- Meaning of the Central Limit Theorem
- Diffusion vs Langevin equation descriptions (average vs individual)
- Diffusion coefficient and fluctuation-dissipation theorem

Central Limit Theorem

$$
Y=X_{1}+X_{2}+\ldots+X_{N}
$$

$$
X_{1}, X_{2}, \ldots, X_{N} \text { are random variables }
$$

$$
\mathrm{E}[Y]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\ldots+\mathrm{E}\left[X_{N}\right]
$$

If $X_{1}, X_{2}, \ldots, X_{N}$ are independent random variables:
$\operatorname{var}[Y]=\operatorname{var}\left[X_{1}\right]+\operatorname{var}\left[X_{2}\right]+\ldots+\operatorname{var}\left[X_{N}\right]$
Note: $\operatorname{var}[X]=\sigma_{X}^{2} \equiv \mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$

If $X_{1}, X_{2}, \ldots, X_{N}$ are independent random variables sampled from the same distribution:

$$
\mathrm{E}[Y]=N \mathrm{E}[X]
$$

$$
\operatorname{var}[Y]=N \operatorname{var}\left[X_{1}\right]=N \sigma_{X}^{2}
$$

Average of the sum: $y \equiv Y / N$
$\mathrm{E}[y]=\mathrm{E}[X], \quad \operatorname{var}[y]=\operatorname{var}[Y] / N^{2}=\sigma_{X}^{2} / N$
Law of large numbers: as N gets large, the average of the sum becomes more and
more deterministic, with variance σ_{X}^{2} / N.

$X_{1}, X_{2}, \ldots, X_{N}$ may be sampled from

We know the probability distribution of Y is shifting $(N E[X])$, as well as getting fat $\left(N \sigma^{2}{ }_{X}\right)$. But how about its shape ?

The central limit theorem says that irrespective of the shape of X,

Why Gaussian?

$\rho(Y) \xrightarrow{\operatorname{lagrg} N} \frac{1}{\sqrt{2 \pi N \sigma_{X}^{2}}} \exp \left(\frac{(Y-N E[X])^{2}}{2 N \sigma_{X}^{2}}\right)$
Gaussian is special
(Maxwellian velocity distribution, etc).
While proof is involved,
here we note that Gaussian is an invariant shape (attractor in shape space) in the mathematical operation of convolution.

Diffusion Equation in 1D

$$
\partial_{t} \rho=-\partial_{x}(\overbrace{-D \partial_{x} \rho})=D \partial_{x}^{2} \rho
$$

Random walker view of diffusion: imagine (a) We release the walker at $x=0$ at $t=0$,
(b) Walker makes a move of $\pm a$, with equal probability, every $\Delta t=1 / v$ from then on.

Mathematically, we say $\rho(x, t=0)=\delta(x)$.

$$
N=\frac{t}{\Delta t}=v t \text { independent random steps }
$$

Then, $x(t)=\Delta x_{1}+\Delta x_{2}+\ldots+\Delta x_{t / \Delta t}$

When $N=v t \gg 1$,

the central limit theorem applies:

$\mathrm{E}[x(t)]=0, \operatorname{var}[x(t)]=v t \operatorname{var}[\Delta x]=v t a^{2}$

So we can directly write down $\rho(x(t))$ as

$$
\rho_{\mathrm{G}}(x, t)=\frac{1}{\sqrt{2 \pi v a^{2} t}} \exp \left(\frac{x^{2}}{2 v a^{2} t}\right)
$$

It is the probability of finding the walker at x at time t, knowing he was at 0 at time 0 .

By plugging in, we can directly verify $\rho_{\mathrm{G}}(x, t)$ satisfies

$$
\partial_{t} \rho=D \partial_{x}^{2} \rho, \rho(x, 0)=\delta(x)
$$

with macroscopic D identified as $\frac{v a^{2}}{2}$.

$$
\rho_{\mathrm{G}}(x, t)=\frac{1}{\sqrt{2 \pi(2 D t)}} \exp \left(\frac{x^{2}}{2(2 D t)}\right)
$$

is called Green's function solution to diffusion equation.

Brownian Motion

Fat droplets suspended in milk (from Dave Walker).
$F=-6 \pi r \eta \nu=-\lambda v$

$$
\begin{aligned}
m \dot{v}= & F=-\lambda v, \quad v(t=0)=v_{0} \\
& \rightarrow v(t)=v_{0} e^{-\frac{\lambda}{m} t}
\end{aligned}
$$

Einstein's Explanation of Brownian Motion

Also, equi-partition theorem: $\left\langle\frac{m v^{2}}{2}\right\rangle=\frac{k_{\mathrm{B}} T}{2}$
In addition to dissipative force, there must be another, stimulative force.
$m \dot{v}=F_{\text {dissipative }}+F_{\text {stimulative/fluctuation }}=-\lambda v+F_{\text {fluc }}(t)$

$$
\begin{aligned}
\left\langle F_{\text {fluc }}(t)\right\rangle & =0 \\
\left\langle F_{\text {fluc }}(t) F_{\text {fluc }}\left(t^{\prime}\right)\right\rangle & =b\left(t-t^{\prime}\right)
\end{aligned}
$$

$$
\text { If } b\left(t-t^{\prime}\right)=B \delta\left(t-t^{\prime}\right): \text { white noise }
$$

Exact Green's function solution of $v(t)$:

$$
v(t)=\frac{1}{m} \int_{-\infty}^{t} d t^{\prime} F_{\text {fluc }}\left(t^{\prime}\right) e^{-\frac{\lambda}{m}\left(t-t^{\prime}\right)}
$$

$$
\begin{gathered}
\langle v(t) v(\tilde{t})\rangle \\
=\frac{1}{m^{2}}\left\langle\int_{-\infty}^{t} d t^{\prime} F_{\text {fluc }}\left(t^{\prime}\right) e^{-\frac{\lambda}{m}\left(t-t^{\prime}\right)} \int_{-\infty}^{\tilde{t}} d \tilde{t^{\prime}} F_{\text {fluc }}\left(\tilde{t^{\prime}}\right) e^{-\frac{\lambda}{m}\left(\tilde{t}-\tilde{t}^{\prime}\right)}\right\rangle \\
=\frac{1}{m^{2}} \int_{-\infty}^{t} d t^{\prime} e^{-\frac{\lambda}{m}\left(t-t^{\prime}\right)} \int_{-\infty}^{\tilde{t}} d \tilde{t^{\prime}} e^{-\frac{\lambda}{m}\left(\tilde{t}-\tilde{t}^{\prime}\right)}\left\langle F_{\text {fluc }}\left(t^{\prime}\right) F_{\text {fluc }}\left(\tilde{t^{\prime}}\right)\right\rangle \\
=\frac{1}{m^{2}} \int_{-\infty}^{t} d t^{\prime} e^{-\frac{\lambda}{m}\left(t-t^{\prime}\right)} \int_{-\infty}^{\tilde{t}} d \tilde{t^{\prime}} e^{-\frac{\lambda}{m}\left(\tilde{t}-\tilde{t}^{\prime}\right)} B \delta\left(t^{\prime}-\tilde{t^{\prime}}\right) \\
=\frac{1}{m^{2}} \int_{-\infty}^{t} d t^{\prime} e^{-\frac{\lambda}{m}\left(t-t^{\prime}\right)} H\left(\tilde{t}-t^{\prime}\right) e^{-\frac{\lambda}{m}\left(\tilde{t}-t^{\prime}\right)} B \\
=\frac{B}{2 m \lambda} e^{-\frac{\lambda}{m}|t-\tilde{t}|} \quad \begin{array}{l}
H(x) \text { is Heaviside step function: } \\
H(x)= \begin{cases}1 \\
0 & \text { if } x>0 \\
1 & x \leq 0\end{cases}
\end{array}
\end{gathered}
$$

In particular: $\langle v(t) v(t)\rangle=\frac{B}{2 m \lambda}$
However, from equilibrium statistical mechanics: equi-partition theorem:

$$
m\langle v(t) v(t)\rangle=k_{\mathrm{B}} T
$$

$$
\rightarrow \frac{B}{2 \lambda}=k_{\mathrm{B}} T
$$

The ratio between square of stimulative force and dissipative force is fixed, $\propto T$

$$
\langle v(t) v(\tilde{t})\rangle=\frac{k_{\mathrm{B}} T}{m} e^{-\frac{\lambda}{m}|t-\tilde{t}|}
$$

Previously, from the Gaussian solution to

$$
\begin{gathered}
\partial_{t} \rho=D \partial_{x}^{2} \rho, \rho(x, 0)=\delta(x): \\
\rho_{\mathrm{G}}(x, t)=\frac{1}{\sqrt{2 \pi(2 D t)}} \exp \left(\frac{x^{2}}{2(2 D t)}\right)
\end{gathered}
$$

we know if the particle is released at $x=0$ at $t=0$:

$$
\begin{gathered}
\langle x(t) x(t)\rangle=2 D t \\
x(t)=0+\int_{0}^{t} d t^{\prime} v\left(t^{\prime}\right), \quad \dot{x}(t)=v(t)
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d t}\langle x(t) x(t)\rangle=2\langle x(t) \dot{x}(t)\rangle=2\langle x(t) v(t)\rangle \\
=\frac{d}{d t}(2 D t)=2 D \\
D=\langle x(t) v(t)\rangle=\left\langle\left(\int_{0}^{t} d t^{\prime} v\left(t^{\prime}\right)\right) v(t)\right\rangle \\
=\int_{0}^{t} d t^{\prime}\left\langle v\left(t^{\prime}\right) v(t)\right\rangle \\
=\int_{0}^{t} d t^{\prime}\left\langle v\left(t^{\prime}\right) v(0)\right\rangle
\end{gathered}
$$

Velocity auto-correlation function: $g(t) \equiv\langle v(t) v(0)\rangle$

Actually, the onset of macroscopic diffusion

$$
\begin{aligned}
& \left(\partial_{t} \rho=D \partial_{x}^{2} \rho\right) \text { is only valid only when } \\
& t \gg \text { intrinsic timescale of } g(t) \propto \frac{m}{\lambda}
\end{aligned}
$$

(Same as central limit theorem in random walk)

So the correct formula is

$$
D=\int_{0}^{\infty} d t^{\prime}\left\langle v\left(t^{\prime}\right) v(0)\right\rangle
$$

The above is one of the fluctuation-dissipation theorems.

Thermal conductivity: $\kappa=\frac{1}{\Omega k_{\mathrm{B}} T^{2}} \int_{0}^{\infty}\left\langle J_{q}(t) J_{q}(0)\right\rangle d t$ Electrical conductivity: $\sigma=\frac{1}{\Omega k_{\mathrm{B}} T} \int_{0}^{\infty}\langle J(t) J(0)\rangle d t$

Shear viscosity: $\quad \eta=\frac{\Omega}{k_{\mathrm{B}} T} \int_{0}^{\infty}\left\langle\tau_{x y}(t) \tau_{x y}(0)\right\rangle d t$
Fluctuation-dissipation theorem (Green-Kubo formula) is one of the most elegant and significant results of statistical mechanics. It relates transport properties (system behavior if linearly perturbed from equilibrium) to the time-correlation of equilibrium fluctuations.

Coming back to diffusion (mass transport):

$$
\begin{gathered}
\quad\langle v(t) v(\tilde{t})\rangle=\frac{k_{\mathrm{B}} T}{m} e^{-\frac{\lambda}{m}|t \tilde{t}|} \\
\text { So } \quad D=\int_{0}^{\infty} d t^{\prime}\left\langle v\left(t^{\prime}\right) v(0)\right\rangle=\frac{k_{\mathrm{B}} T}{\lambda} .
\end{gathered}
$$

is actually the mobility of the particle, when driven by external (non-thermal) force.
$\frac{D}{1 / \lambda}=k_{\mathrm{B}} T$ is called the Einstein relation, first derived in 1905.

References

Kubo, Toda \& Hashitume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, New York, 1992).

Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
van Kampen, Stochastic processes in physics and chemistry, rev. and enl. ed. (North-Holland, Amsterdam, 1992).

Reichl, A modern course in statistical physics (Wiley, New York, 1998).

