
Module 2: Protein engineering for bioremediation

Overview of Module 2 goals

Research:

Genetically engineer a cell surface display peptide to capture cadmium in a model for bioremediation

Communication:

Journal article presentation

Research article

Technical:

Protein engineering:

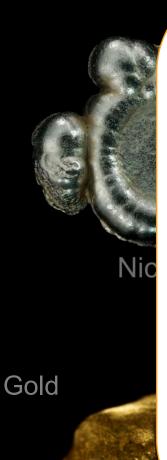
Site-Directed Mutagenesis cloning Flow cytometry

Functional assays:

Elemental analysis of metal uptake


Measure metal fluroescence

Overview of today's lecture


• Heavy metals

- What are they?
- What are their uses?
- How do heavy metals get into environment?
 - Geogenic sources
 - Anthropogenic sources
- What happens after heavy metal exposure
 - To microbes and plants
 - To humans
- How can we mitigate heavy metal contamination?
 - Reusing metals for manufacturing

Heavy metals and their uses

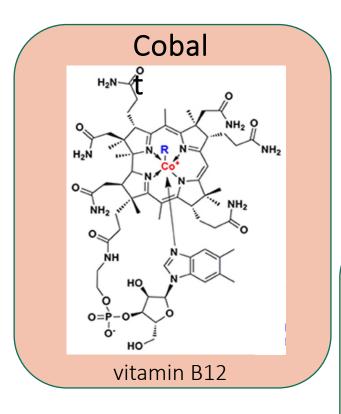
Heavy metals

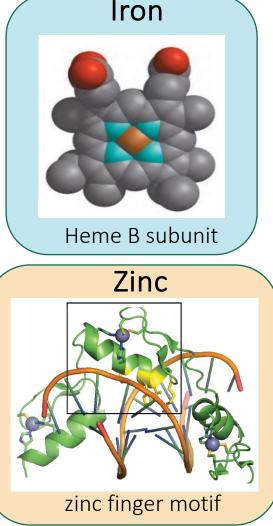
Heavy metals is poorly defined as a term

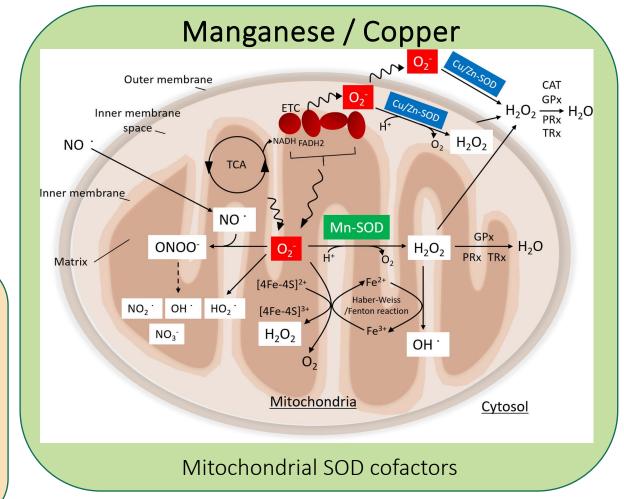
- Relatively high atomic density (greater than 5 g/cm³)
- Atomic number > 20
- Exhibit metal-like properties

cury

	_		-			r			•		-			•			10
1 H 1.008	chroi	mium	١				iron		СС	balt		СС	pper	5A 15	6A 16	7A 17	2 He 4.00
3 Li 6.94	4 Be 9.01			man	gane	se			/ <u>n</u>	ickel		5 B 10.8 Z	inc	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	зв З	4B 4	5B 5	6B 6	7B 7	8	— _{8В} 9	1,0	1B 11	2B 12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se _{78.96}	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 silv	er ,	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Ca	dmiu		53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 F (2)	ad,	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 plat	108 inum	109 Mt (268)	110 DS (281)	111 Rg (281)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (293)	118 Og (294)
								gol	d			cury					
		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	6	Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0		
		90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	(© mccord


Metals can act as protein co-factors in human biology


-	_																· •
1 H 1.008	2A 2	_										за 13	4A 14	^{5A} 15	6A 16	7A 17	2 He 4.00
3	4]										5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15_	16	17	18
Na	Mg	3B	4B	5B	6B	7B		— 8B—		1B	2B	AI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35_	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.64	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.96	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(277)	(268)	(281)	(281)	(285)	(286)	(289)	(289)	(293)	(293)	(294)


58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	05	06	07	00	00	100	101	100	100
00	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	⁹² U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

© mccord

Metals crucial for metabolic activity are also known as essential elements

1A 1		H	eav	y m	etal	s ha	ve v	/alu	e as	5"рі	recie	ous	me	tals	<i>יו</i>		^{8A} 18
1 H 1.008	2A 2	_										за 13	4A 14	^{5A} 15	6A 16	7A 17	2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	зв З	4B 4	5B 5	6B 6	7В 7	8	— 8В— 9	10	1B 11	2B 12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se _{78.96}	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 AC (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 MC (289)	(203) 116 LV (293)	(210) 117 Ts (293)	(222) 118 Og (294)

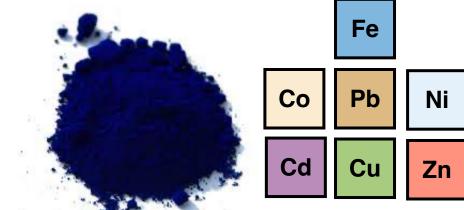
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	11	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Ir
1 111	10			I G	7 31 1 1								

© mccord

Precious metals have economic and cultural value Silver: \$24 / oz

Gold: \$2,198 / oz

1A 1		Ma	ny	hea	vy n	neta	als p	olay	a rc	le i	n m	anu	fact	curir	ng		8A 18
1 H 1.008	2A 2											зА 13	4A 14	^{5A} 15	6A 16	7A 17	2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	зв З	4B 4	5B 5	6B 6	7В 7	8		10	1B 11	2B 12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se _{78.96}	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 AC (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 MC (289)	(203) 116 LV (293)	(210) 117 Ts (293)	118 Og (294)


58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
00	04												
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	92 U	93 Np	⁹⁴ Pu	95 Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	100 Fm	101 Md	102 No	103 Lr

© mccord

Heavy metals are used to manufacture common materials

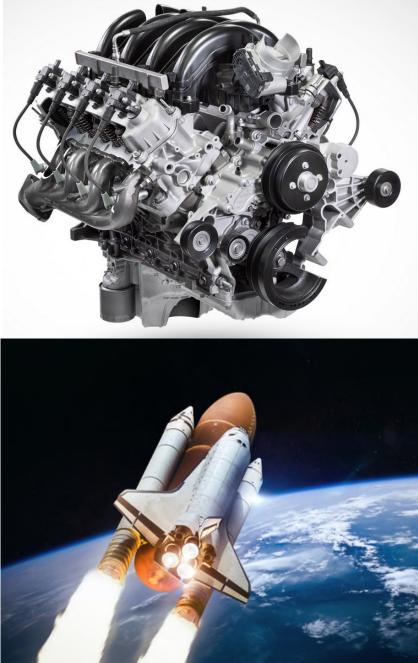
Dyes and Pigments

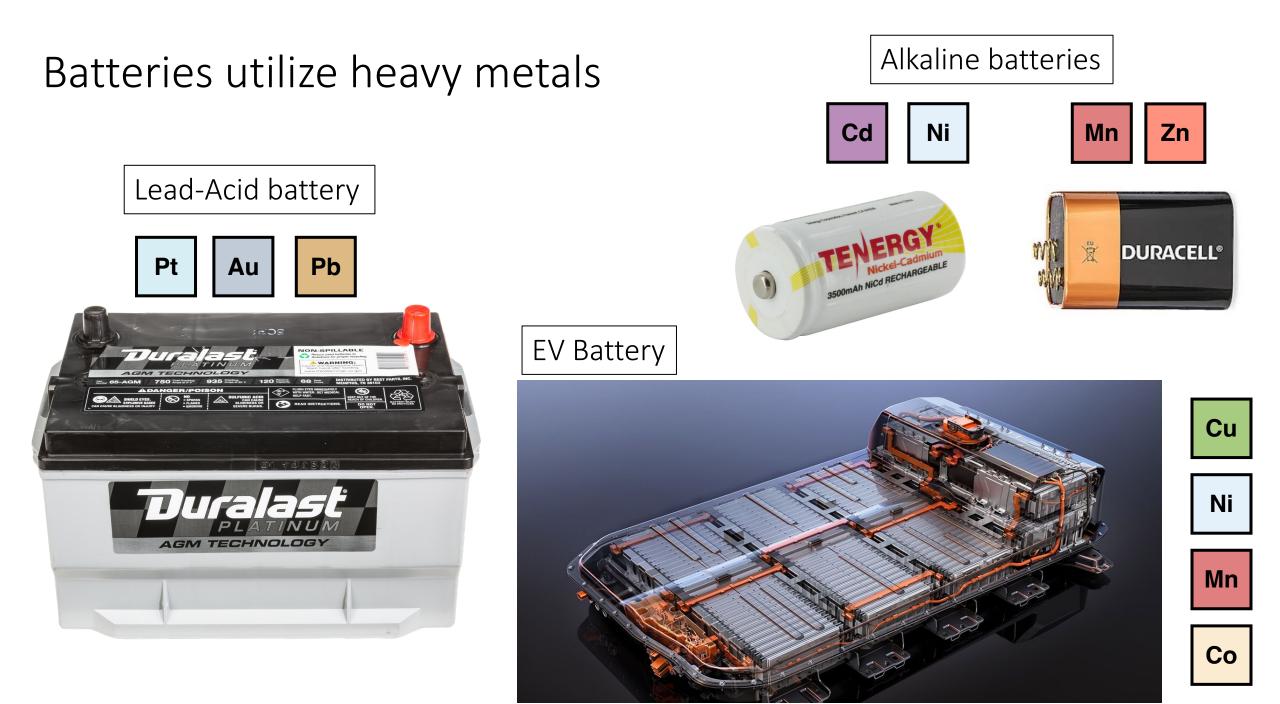
Prussian Blue

Fe Cr Ni

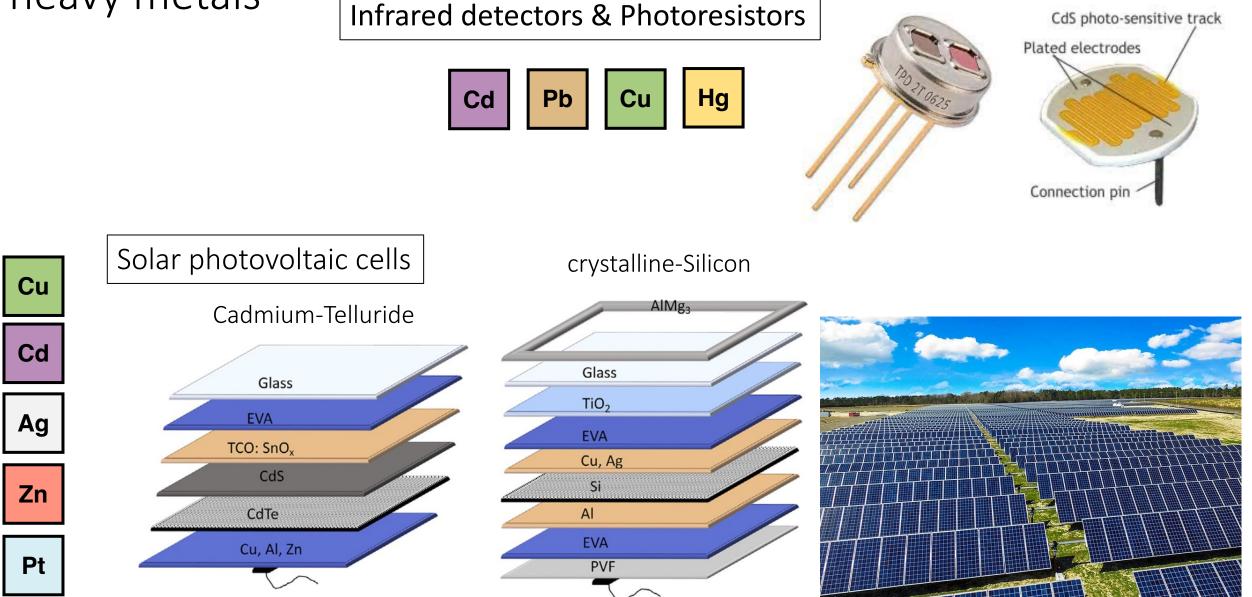
Stainless Steel

Heavy metals are used in coating and electroplating for everything from automotive to aerospace machinery

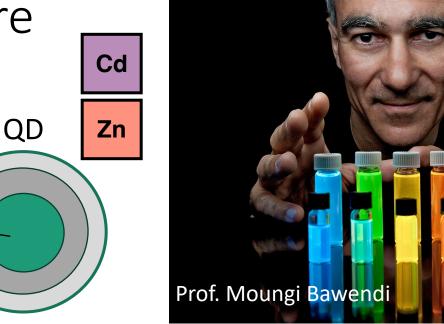

Ni


Au

Cd


Aq

Photovoltaic cells, photoresistors, infrared detectors all use heavy metals


Metal core quantum dots are valuable technology

Stabilizer

Shell

Metal core

- Semiconductor crystal
- Used in many industries:
 - Medical diagnostics
 - Solar cells
 - Electronics (TVs, etc)
- Nano-scale structure which can be "tuned" by changing the size and material of the metal core
 - Larger particles emit longer wavelength light
 - Other properties are optimized for signal strength, etc...
- Quantum dots often have Cadmium selenide or Cadmium sulfide cores
 - Because of toxicity issues, non-toxic cores have been developed

Zn QDs (Bill Pinney)

1A 1	S	om	e he	eavy	' me	etals	sare	e hig	ghly	tox	ic at	t lov	v ex	pos	sure		^{8A} 18
1								leve	els								2
H 1.008	2											13	14	15	10	а 17	He 4.00
3 Li	⁴ Be											5 B	6 C	7 N	8 0	9 F	10 Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11 No	12	00	40	F D		70				40		13	14	15 D	16	17	18
Na 22.99	Mg 24.31	3B 3	4B 4	5B 5	6В 6	7В 7	8	— 8B— 9	10	1B 11	2B 12	AI 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19	20	21	22		24	25	26	27	28	29	30	31	32	33	34	35_	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.87	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.64	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47 55	87.62 56	88.91 57	91.22 72	92.91 73	95.96 74	(98) 75	101.1 76	102.9 77	106.4 78	107.9 79	112.4 80	114.8 81	118.7 82	121.8 83	127.6 84	126.9 85	131.3 86
Cs	Ba	La	Hf	Ta	Ŵ	Re	Ös	^{′′} Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87 Fr	88 Do	89	104 Rf	105 Db	106	107 Bh	108	109 Mt	110 Ds	111 Da	112 Cn	113 Nh	114 Fl	115 Mc	116	117 Ts	118
(223)	Ra (226)	Ac (227)	(261)	(262)	Sg (266)	DI (264)	Hs (277)	(268)	(281)	Rg (281)	(285)	(286)	FI (289)	(289)	LV (293)	(293)	Og (294)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
00	01	00	00	0.4	05	00	07	0.0	0.0	100	101	100	100
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	92 U	⁹³ Np	Pu	Am	Cm	⁹⁷ Bk	⁹⁸ Cf	Es	Fm	¹⁰¹ Md	102 No	103 Lr

© mccord

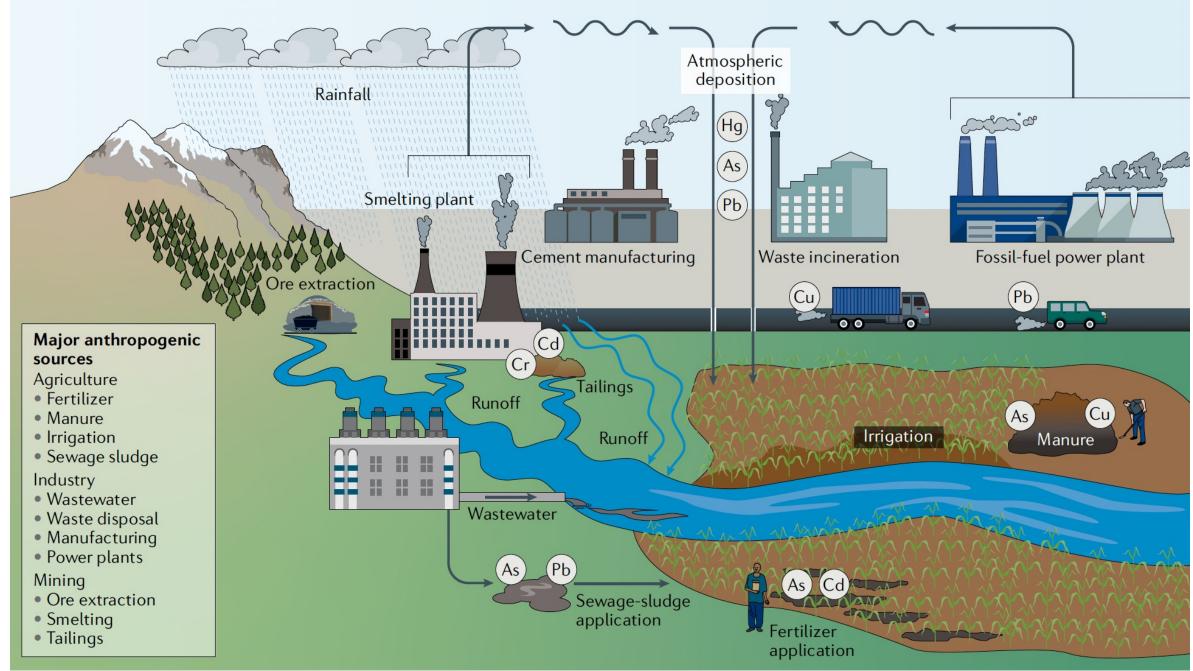
Environmental contamination with heavy metals

There are 2 main routes of heavy metal release into the environment

Geogenic sources

Weathering of rocks

Volcanoes


Anthropogenic sources

Agrochemicals

Industrial activity

Smelting and mining activity

Sewage and waste disposal

Agrochemicals release heavy metals into the soil

Fertilizers

- Sewage sludge fertilizer contains heavy metals
- Fly ash from coal plants
- Inorganic phosphate-based fertilizers increase cadmium in the soil
 - Some disagreement if the fertilizers release cadmium or increase bioavailability

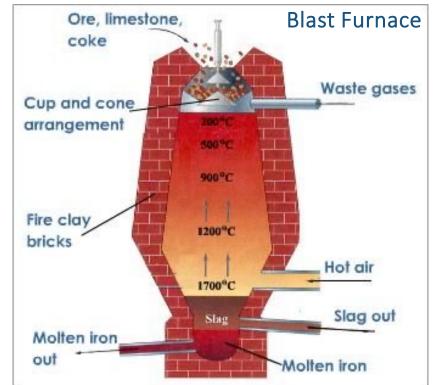
Pesticides and fungicides

• Can contain heavy metals as contaminants

Industrial activity contributes to heavy metal contamination

- Coal-fired **power stations** release:
 - Cu, Zn, Cd, Ni
- Chemical processing which involves heavy metals is required to produce common goods
 - Plastics
 - textiles
 - electronics
 - wood preservatives
 - automotive components
- The waste generated in manufacturing can leach into the environment

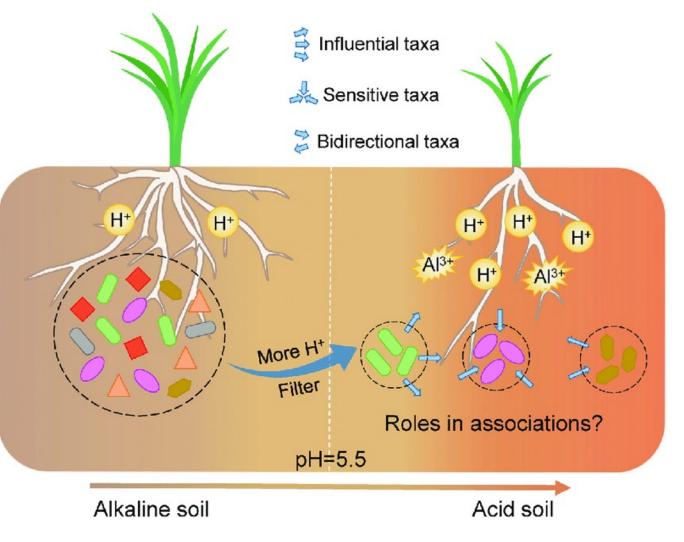
Smelting and mining activity produce metal contaminants



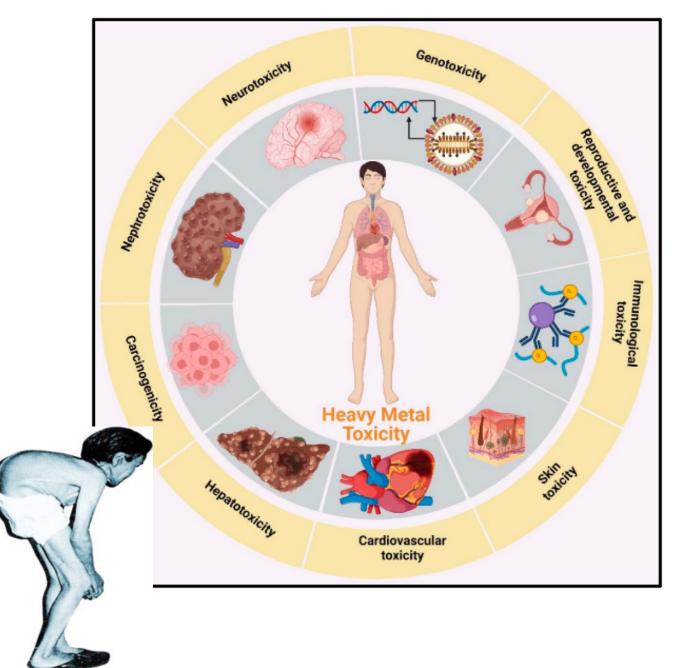
Mining

- Disruption of sedimentary layers can release embedded heavy metals
- Waste runoff from mining sites contaminates water

Smelting


- Slag generated from refinement of metal can contain contaminants
 - Smelting zinc produces slag containing lead and cadmium
- Heavy metal particulates are also released

Consequences of heavy metal contamination


Heavy metals fundamentally change soil microbial richness and damage plants

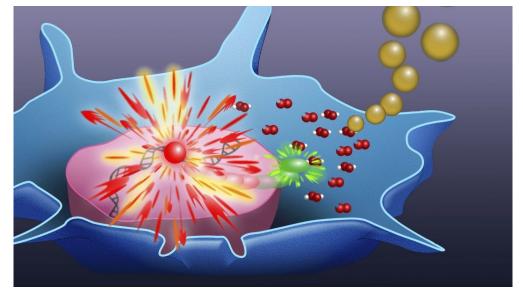
- Decrease in soil viability
 - lower microbial biomass
 - less biodiversity
- Reduced nitrogen fixing
- Reduced microbial **metabolism**
 - reduced essential enzyme activities
 - reduced litter breakdown
- Altered microbial communication
- Accumulates in plant roots and causes overall cell stress

Heavy metal exposure has wide ranging effects on human health

- Systemic toxicity
- Damage of multiple organs
- Genomic damage
 - Carcinogenic (Cr)
 - Skin ulcers (Cr)
 - Neurotoxic (Pb, Hg)
 - Bone and kidney deterioration (Cd)
 - Cardiovascular (Pb, Cd)

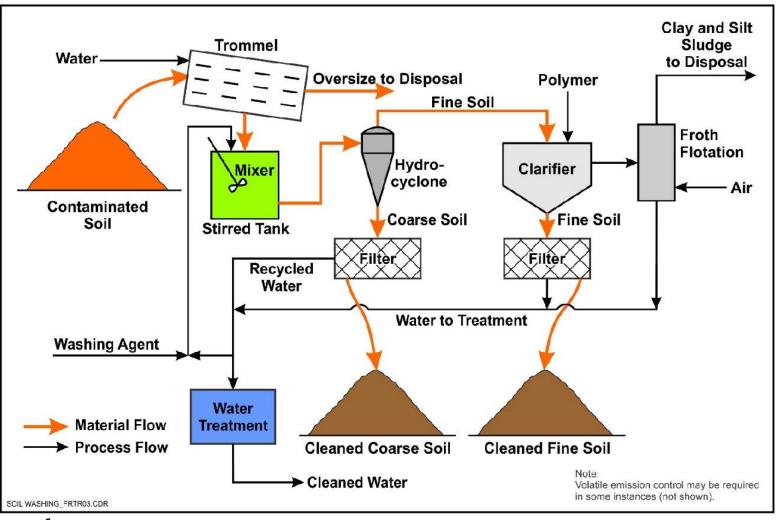
Itai-Itai disease

Bayou et al. 2023


There are multiple proposed mechanisms for metal toxicity

Protein disruption

- Inhibit enzymes through thiol, sulfhydryl, amide group binding
 - Broad enzyme inhibition
- Inhibits enzymes involved in DNA damage repair
 - Many heavy metals are known or putative carcinogens
- Replace essential metal cations and cofactors


Oxidative stress

- Disrupt mitochondrial function
- Generate reactive oxygen species

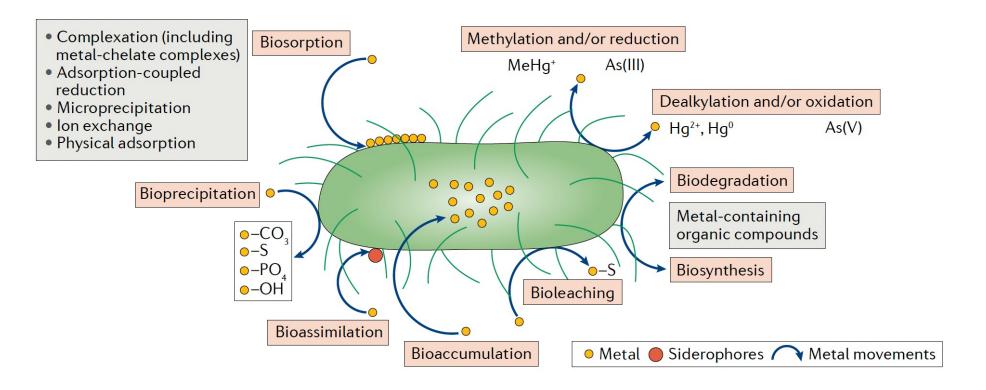
What can we do to mitigate this issue?

Physical and chemical mitigation of heavy metal contamination

Soil excavation / soil washing

- Physically filter soil since contaminants can cause clumps
- Wash the remaining soil with
 - Surfactants
 - Solvents
 - Acids

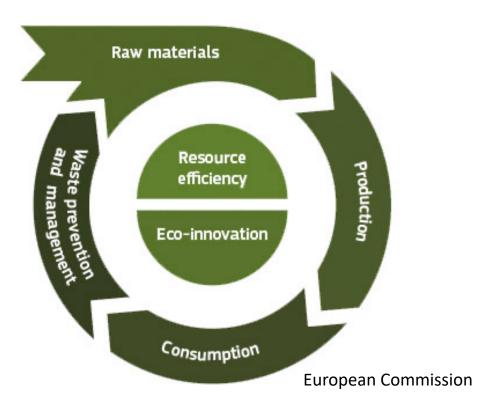
Chemical precipitation of contaminants from wastewater


- Water treatment provides cleaner water
- Concentrated contaminants can be contained

Pros / Cons

www.frtr.gov

Bioremediation is a useful tool to mitigate heavy metal contamination


- Bacteria, yeast, and plants have natural defenses against heavy metal damage
- These defenses can be engineered to create effective **remediation models** for pollutants

Then what?

Circular economy (applied to metals in manufacturing)

- Promote sustainability by keeping resources in circulation for as long as possible
 - Maximize use of precious materials
 - Reduce waste
- Efficiency in production
- Mindful consumption
- Waste management
 - Recycling
 - Containment of waste in production so that material can be reused
 - Closed-loop manufacturing

How does this all relate to your Mod2 project?

- Design elements to create a more optimized bioremediation model
- Use Saccharomyces cerevisiae
 - Previously modified to produce H_2S gas to help precipitate contamination metals in media
- Use rational peptide design to create a cell surface display peptide capable of capturing cadmium sulfide
 - Base design on literature regarding amino acid binding to cadmium
- Explore idea of capturing cadmium sulfide capable of being recycled as quantum dots