M1D4: Complete data analysis for γ H2AX experiment

- 1. Prelab
- 2. Image analysis for γ H2AX assay
- 3. Paper discussion with Noreen
- 4. Make a CometChip

But first...

Mod1 Overview

Last lab:

IF staining

This lab:

analysis
Paur comet chip

Next lab:

(2 met chap

- 1. Use repair foci experiment to measure DNA breaks
- Examine effect of H_2O_2 +/- As on double strand DNA breaks by measuring γ H2AX foci formation

- 2. Use high-throughput genome damage assay to measure DNA damage
- Measure effects of H₂O₂ +/- As on DNA damage by measuring DNA migration in agarose matrix

Notes on bias in images

Data can be skewed dramatically by bias (conscious or unconscious)

 Microscopy images are vulnerable to this because they are often used as representative of a much larger population

- How do we mitigate bias when taking and analyzing images?
 - Blind imaging or analysis
 - Set parameters ahead of time (i.e. select images randomly in the DAPI channel without looking at H2AX staining)

How will you analyze your images for the Data Summary?

- Use macro developed by Joshua Corrigan in Engelward lab
 - The DAPI channel used to create a "mask" of the nuclei
 - Gamma-H2AX foci are identified by pixel maxima readings in the FITC channel
 - You will be able to compare you "by eye" assessment of punctae to the count identified by the program
 - Average the number of foci per nuclei per image to get data point

Set nuclei threshold to create region of interest to

count foci

ADS 5

- Adjust threshold to capture discrete nuclei
 - May not be perfect!

 Program will also watershed the images to separate nuclei that are close together

Set prominence for the FITC/488 channel image

- Find a prominence setting that allows most visible foci to be counted in a condition
 - Select output of Single Points
 - Check Preview point selection

- Where your start?

Compile results in Excel

 Results should have a Max of 0 or 255

• Integrated Density multiples of 255 low

Data analysis required for Data Summary

- Complete the analysis of images in all conditions (3 replicates from your team and 3 replicates from instructors)
 - Divide the work amongst your lab team!
- Once the numbers are recorded, take the average number of foci for each image (i.e. treat each image as n=1) =1) tx group n=Co ss! technical replicate vs biological replicate
 - This is a special circumstance for this class!
 - Statistics are another lab session

• The average number of foci in each treatment condition will become a figure in the Data Summary

After the analysis is done, feel free to explore the images/data!

• If you have time and interest, feel free to explore other aspects of the images (once you have established your baseline data using the wiki parameters)

> Look at any differences in DAPI staining Is there any relationship between DAPI intensity and foci number?

> > Play around with threshold and prominence settings What effect does changing analysis parameters have on the numbers generated?

Note: Only the original analysis (average # of foci under a single prominence) should be used in your Data Summary

In lab today:

- 1. Work on image analysis until 3pm
- 2. Paper discussion from 3-3:45ish
- 3. Demo on creating the CometChip gel
- 4. Work in teams to pour CometChip gels

HW due M1D5

- 1. Create a data figure of H2AX results with title and caption
- 2. Visit Comm Lab before M1D5.

Data figure example

- Image should not be the entire page
 - Only needs to be large enough to be clear / visible
 - 1/3 1/2 of a page in portrait orientation
- Title should be conclusive
 - Don't include what you did, rather state what you found (take home message)
- Caption should not detail the methods or interpret the data
 - Define abbreviations, symbols, etc.
 - Info needed to "read" figure
 - Figure captions with multiple panels need to start with a topic sentence

Figure 1: Development of BRET assay to monitor EGFR and SH2 domain interactions. CHO-K1 cells were transfected with Citrine-EGFR (A) and renilla luciferase (RLuc)-tagged SH2 domains from PLCq, Grb2, CTEN, and Shc3 (B). Western blots of CHO-K1 lysates were probed with anti-EGFR (A) or anti-RLuc (B) antibodies. Arrowheads indicate the expected molecular weight of the RLuc-tagged proteins; (1) RLuc-SH2-PLCq, (2) RLuc-SH2-CTEN, (3) RLuc-SH2-Grb2 and RLuc-SH2-Shc3, and (4) RLuc alone. Mock indicates no cDNA was utilized during transfection. (C) For CTEN only, BRET signal was quantified using a luminometer after stimulation of CHO-K1 with 100 ng/mL EGF for 15 min.

Data Summary = pptx file with slides set at 8.5 x 11" portrait

