M3D3: Solar cell assembly

4/29/15

Lab business

• Lab treat...

- Schedule changes
- Research proposal
 - Today: discuss topics with your partner and select one for further research
 - Friday: cross-group discussions

While you were away...

- Au:phage:TiO₂ complexes were dried and ground
 - Ethyl cellulose (binder) and terpineol (solvent) were added to make paste
- FTO glass (base of anode)
 was coated with TiO₂

Your part will be to apply the paste to the FTO glass base (doctor blading)

Identifying the conductive side of the TCO (transparent conductive oxide)

"Doctor-blading" the titania (TiO₂) paste

Solar cell preparation type

- Doctor blading
 - Caste created with tape
 - Paste equally distributed in caste using glass slide
- Demo and practice with glue, etc.

Sintering the film (heating)

http://www.solaronix.com

- (1) Burn off polymer binder in paste to create pores for the dye. (Must be in air)
- (2) Sinter nano-particles to connect in a conducting network. (Must be in argon)

Filling the electrolyte

Assembling the device with another electrode

Today Noreen

- 1. Practice doctor blading
- 2. Assemble solar cells in Belcher Laboratory
- 3. Discuss research proposal ideas with partner and teaching faculty

- 4. See website for great overview of DSSC!
 - http://community.nsee.us/concepts_apps/dssc/ DSSC.html