M3D4: Transmission Electron Microscopy (TEM)

- 1. *Quick* Prelab Discussion
- 2. Two groups at a time go to TEM (Koch)
- Class works on research proposal (Presentations in one week! 20% of your grade!)

Announcements: Collins lab looking for summer UROP in CRISPR diagnostics (contact Michael Kaminski, mmk@mit.edu)

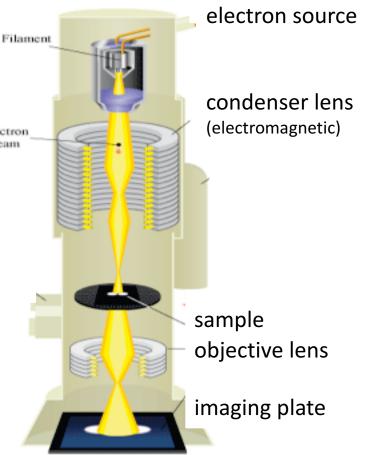
Only three 20.109 days left!

M3 Assignments

- Research proposal (20%) 5/11 by 1pm
 - Upload slides to Stellar by deadline
 - Bring 1 print-out of your slides to 16-336
- Mini-report (5%) 5/14 by 10pm
 - No abstract, no methods section
 - Background/Motivation, Figures and combined Results/Discussion
- Final blog post about Mod 3: 5/12 by 10pm

• Extra Office Hours:

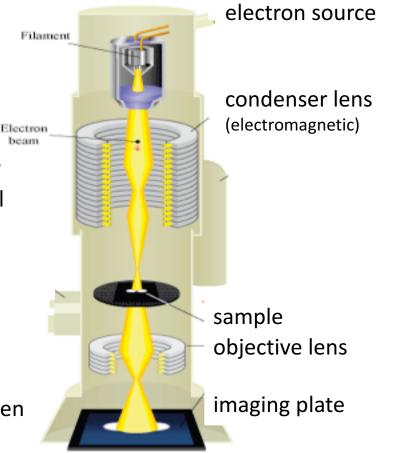
- Monday 5/7, 2-5pm, Noreen (16-317)
- Tuesday 5/8, 10-11am, Leslie & Josephine (56-322)
- Tuesday 5/8, 2-5pm, Noreen (16-317)
- Wednesday 5/9, 10-12:30pm, Leslie & Josephine (56-322)
- Wednesday 5/9, 2-5pm, Noreen (16-317)
- Thursday 5/10, 10-11am, Josephine (56-341c)



Make Comm Lab appointments!

TEM: foundations

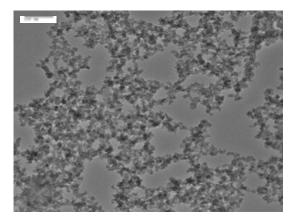
1931 Ernst Ruska (1986 Nobel Physics)

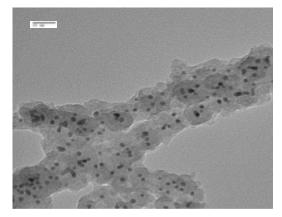

- High resolution ~ | Å (o.\nm)
 - de Broglie wavelength $\lambda_{(e-)} \sim 0.0025 \mu_{yybeam}$
 - Compare to $\lambda_{(blue light)} \sim 400 \text{ nm}$
 - Rayleigh R_{light} = 0.61 * λ / NA
- Electron source:
 - Thermionic emission by tungsten
 - Accelerating voltage ~ 200 kV
 - Focusing lenses (electromagnetic)
 - Vacuum gas scatters e

TEM: foundations

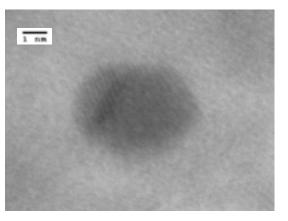
1931 Ernst Ruska (1986 Nobel Physics)

- Sample preparation
 - Thin and sturdy (10nm –100μm)
 - Grid: <u>CM</u>—sturdy and conductive
 - Biomaterials coated in e⁻ dense material
- Image ≈ sample electron density
 - e⁻ pass through & are also scattered
 - phosphor screen (visualization by eye),
 YAG-coupled CCD (capture image)
 - $-e^{-} \rightarrow \underline{photons}$, image on film or screen

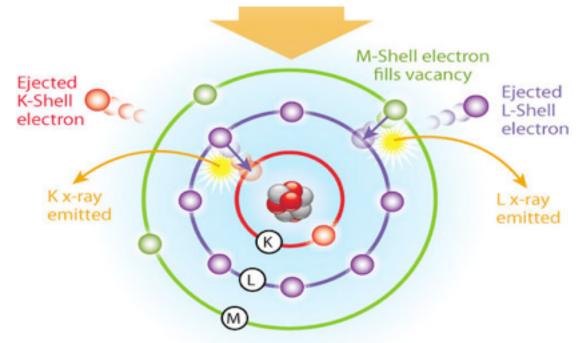

detection


TEM micrographs

Results / Discussion

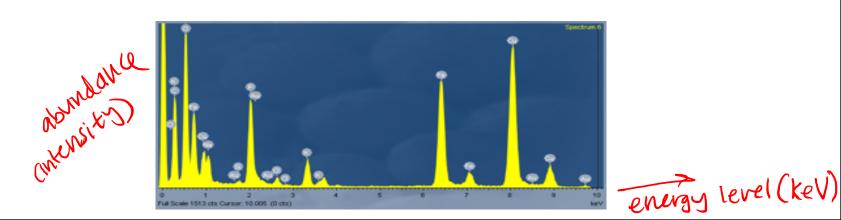

What will you learn?

- At low resolution: morphology, #NP per phage, length/diameter of nanowives, uniformity of mineralization
- · At high resolution: Size of NPS, anorphoens vs. crystalline FePO4

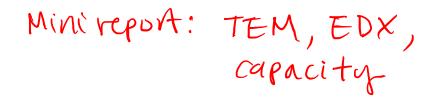


Elemental mapping by energy dispersive x-ray spectroscopy (EDX)

• X-ray emission spectrum is characteristic of unique atomic structure of element


EDX analysis on JEOL, JEM2100

EDX: energy-dispersive X-ray spectroscopy analysis


Atomic composition of heavier elements in material

sodium, si

- X-ray emission spectrum is characteristic of unique atomic structure of element
- Expected: Iron, phosphones, gold, carbon, oxygen, copper
- Contamination:

Today in lab...

- TEM in Koch basement
 - What can your TEM images suggest about the phage biomineralization and AuNP binding? Are the NP the size expected?
- Use your time wisely:
 - draft your research proposal slides
 - discuss how the presentation speaking parts will be shared
 - draft talking point notes for presentation
 - Review rubric on wiki to make sure you are including all components necessary
- M3D5HW: Calculate mA needed to discharge your experimental battery (choose 1 cathode weight) battery in 10 hrs, handwritten or emailed calculations are fine, turn in individually
- Reminder: Quiz M3D5 on Wednesday