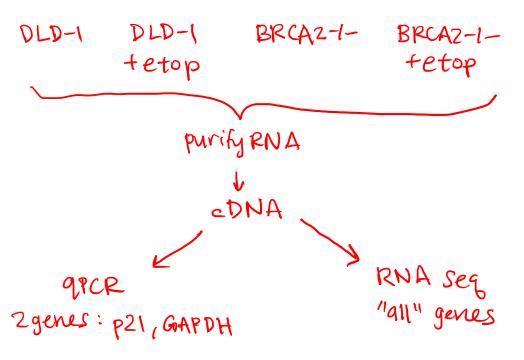
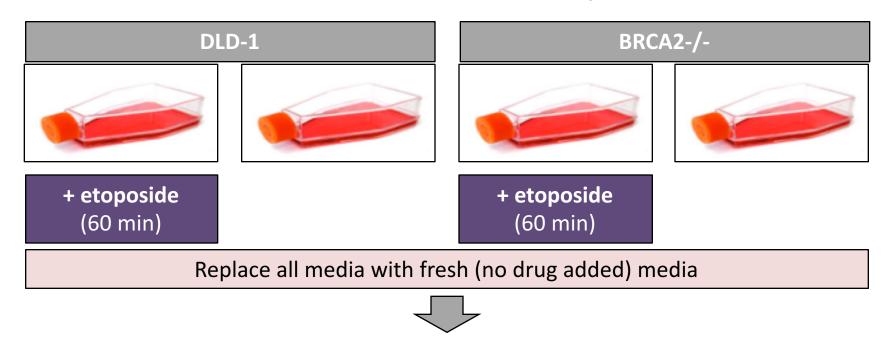

M2D3: Purify RNA and practice RNA-seq data analysis methods

Announcements/Reminders: 3/17: Mini-presentation due at 10pm 3/18: Blog post due, 10pm


- 1. Prelab discussion
- 2. ½ class to TC to harvest cells for RNA purification followed by cDNA synthesis
- 3. ½ group start intro to R exercises for RNA-seq analysis

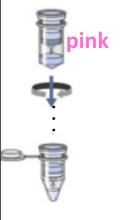
M2: Experimental overview



What genes are differentially expressed in response to DNA damage?

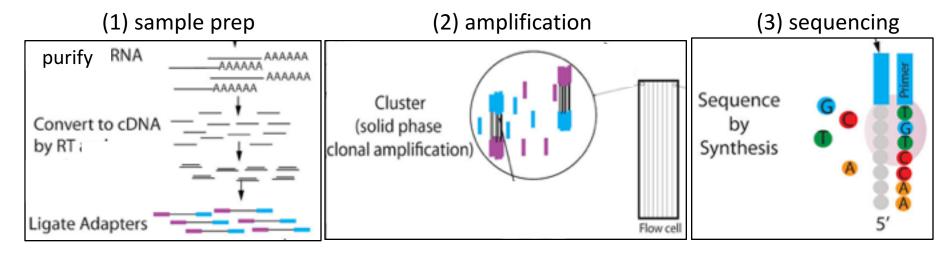
How are we addressing this question?

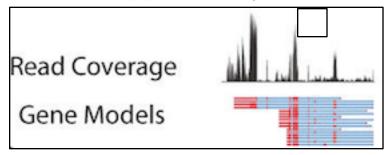
M2D2: Treated cells with etoposide


M2D3: extract RNA (~48 hours after DNA damage)

Insdtructors already extracted RNA from control (no etoposide) flasks

Isolate RNA: QIAshredder + Rneasy kit


steps	contents	purpose
lyse	RLT (with highly denaturing guanidine-thiocyanate salt)	inactivate RNase, disrupt membranes, helps bind column
	+ QIAshredder	homogenize (shear high-MW genomic DNA)
prepare	70% ethanol	promote efficient binding to silica
bind	silica membrane in column	retain mRNA
wash	RW1 RPE	remove contaminants ** after this wash, important to get rid of <u>all</u> ethanol
elute	water, RNase-free	high-purity RNA


Components and procedure of cDNA Synthesis

steps	conditions	reagents added
denature & anneal	65°C 5 min on ice 1 min	1 μg RNA + oligo (dT) ₂₀ primer + dNTPs (dATP, dCTP, dGTP and dTTP)
synthesize cDNA	50°C 50 min	Superscript III Reverse Transcriptase MgCl ₂ DTT RNase OUT (destroys Rnases) buffer
terminate	85°C 5 min	(kills RT enzyme)
remove RNA	37°C 20 min	RNase H
Purify cDNA		M2D5

Workflow for Illumina HiSeq 2000

(4) data analysis

Malone JH, Oliver B, BMC Biol. 2011

Sequencing by synthesis (Illumina)

https://www.illumina.com/science/education/sequencing-workflow-accuracy.html

Today in lab

- 1. Silver, Purple, Pink—TC to harvest cells for RNA purification followed by cDNA synthesis
- 2. Red, Orange, Green, Blue—start practice RNA-seq analysis

For next time

- M2D4 HW: Methods M2D1-M2D3 (omit practice RNA-seq analysis)
 - NO use of "per manufacturers protocol" for this method homework
- Mini presentation due Saturday March 17th at 10pm.
 - Email video file to bioeng20.109@gmail.com