M1D6: Image and analyze high-throughput genome damage assay

- 1. Prelab
- 2. Use Matlab to examine your CometChip data
- 3. Analyze CometChip data set to examine DNA damage repair

Mod1 Overview

Last lab:

Comet Chip

This lab:

MATLAB

Next lab:

- 1. Use repair foci experiment to measure DNA breaks
- Examine effect of H_2O_2 +/- As on double strand DNA breaks by measuring γ H2AX foci formation

- 2. Use high-throughput genome damage assay to measure DNA damage
- Measure effects of H₂O₂ +/- As on DNA damage by measuring DNA migration in agarose matrix

Overview of CometChip Assay: chemically treating cells

and visualization

Treat captured cells in comet chip with H₂O₂ and As Agarose Electrophoresis Lyse cells & unwind DNA (DNA still captured agarose in overlay) Analysis via Stain DNA and image via Matlab fluorescence microscopy

Output of the alkaline CometChip assay

supercost of DNA-were nucleus was

No Damage

- Supercoiled nucleoid
- Little or no migration

High Damage

forms a "comet tail"

- * Nuclear DNA normally supercoiled
 - * DNA breaks and fragmentation releases tension
 - * Unwound DNA will migrate in response to electrical current to create comet

How will you assess and analyze CometChip data?

- Assess comet images in MATLAB
 - Do recommended parameters (on wiki) accurately measure most comets in your sample?
- - Graph % Tail DNA for Data Summary

Have a "class data example" folder in Dropbox for analysis if your data is confusing
Use Excel to analyze compiled CometChip data

Data image labels

- The MATLAB script requires a specific naming scheme
- Use these image names to decode your data
- _01A_ / _02A_ / _03A_ = column A = No H202 No As
- _01B_ / _02B_ / _03B_ = column B = No H202 10uM As
- _01C_ / _02C_ / _03C_ = column C = No H202 40uM As
- _01D_ / _02D_ / _03D_= column D = H202 No As
- _01E_ / _02E_ / _03E_ = column E = H202 10uM As
- $_01F_/_02F_/_03F_$ = column F = H202 40uM As

Overview of the repair CometChip assay

Examine CometChip images for visual examples to include in Data Summary Figure

- Can use example individual comets for each condition
- Pull them out of ImageJ

No Treatment

40uM As + 5uM H₂O₂

For Today

- 1. Use Matlab to analyze comets from CometChip experiments
- 2. Analyze repair CometChip data from linked Excel sheet
- 3. Begin work on Data Summary

For M1D7

- Answer the Homework questions to frame your Implications & Future Works section for the Data Summary
- With your lab partner, revise your methods draft and add methods for M1D3

Notes on homework

• Homework in total = 10% of the final grade

• Goal:

- tell you how to start
- have you practice using wiki and prelab guidelines
- grade as though it's a final assignment so you know where you need to get

- Homework grades are always low (past classes average ~ 80%)
 - Homework grades increase throughout the semester (repeat assignments)

Anytime you want to talk about how you are doing in the class-just ask!