Engineered bacteria for the conversion of amyloid plaques to dark chocolate

Shannon K. Hughes and Noreen L. Lyell

Alzheimer's affects 5.4 million Americans

Information about disease and progression

Transition statement linking to β-amyloid plaques (written on slide and/or stated verbally)

β-amyloid plaques contribute to degeneration of nerve function

- General information about plaque origin and structure
- Block cell-cell communication
- Induce apoptosis
- Lead to generalized destruction of brain tissue

Symptoms of Alzheimer's may be alleviated by elimination of plaques

- Information about current field of research
 - Briefly, what has been done

Though some progress has been made in reducing plaques, our aim is to convert them to usable product

Novel amyloid-to-dark chocolate (ADC) enzyme recently discovered

- Identified in our laboratory using a yeast twohybrid screen
- Information about ADC enzyme

Research aim: use ADC to convert β-amyloid plaques to dark chocolate

 Goal 1: Optimize the production of genetically engineered ADC using non-toxic *E. coli* strain

 Goal 2: Determine enzymatic efficiency of engineered ADC in vitro using harvested βamyloid plaques

 Goal 3: Measure efficacy of engineered ADC in vivo using a mouse model of Alzheimer's disease

Optimize production of ADC in *E. coli*

- express ADC
 - Clone ADC into pXYZ
 - Test protein expression
 - Additional steps...
- Potential setback
 - Possible solution

Determine enzymatic efficiency of ADC using β-amyloid plaques

- Research goal
 - Steps...
- Potential setback
 - Possible solution

Measure efficacy of ADC *in vivo* using mouse model

- Research goal
 - Steps...

otential setback

Possible solution

Include impact statement

 Include significance of your research as it relates to science and society

Conversion of \(\beta\)-amyloid plaques to usable product in treatment of Alzheimer's

