Difference between revisions of "Lecture Notes:Modeling real systems with ideal elements"

From Course Wiki
Jump to: navigation, search
(Characteristics of the low pass frequency response)
(Characteristics of the low pass frequency response)
Line 1: Line 1:
 +
==Op amp circuit example==
 +
 +
[[Image:Transimpedance amplifier with low pass.jpg|400 px|right|thumb|Transimpedance amplifier with low pass filter capacitor]]
 +
 +
:For convenience, let <math>s = i\omega</math>. The impedance of the capacitor is <math>\frac{1}{Cs}</math>
 +
 +
:Applying the golden rule: <math>v_+ = v_- = 0</math>
 +
 +
:KCL at the <math>V_-</math> node: <math>i_{in} + \frac{V_A}{R_1} + \frac{V_O}{1/Cs} = 0</math>
 +
 +
:Simplifying: <math>R_1 i_{in} + V_A + R_1 C s V_O = 0</math>
 +
 +
:Solving for <math>V_A</math>: <math>V_A = -R_1 i_{in} - R_1 C s V_O  \quad \quad (1)</math>
 +
 +
:KCL at the <math>V_A</math> node: <math>-\frac{V_A}{R_1} - \frac{V_A}{R_2} + \frac{V_O - V_A}{R_3} = 0</math>
 +
 +
:Simplifying: <math>V_A \left ( R_2 R_3 + R_1 R_3 + R_1 R_2 \right ) = V_O \left ( R_1 R_2 \right )</math>
 +
 +
:Solving for <math>V_A</math>: <math>V_A = \frac{V_O ( R_1 R_2 )}{R_1 R_2 + R_1 R_3 + R_2 R_3} \quad \quad (2)</math>
 +
 
==Characteristics of the low pass frequency response==
 
==Characteristics of the low pass frequency response==
  
 
[[Image:First Order Magnitude Response.jpg|400 px|right|thumb|Magnitude of first order low pass filter transfer function H(&omega;) = 1/(1 + &omega;) in decibels]]
 
[[Image:First Order Magnitude Response.jpg|400 px|right|thumb|Magnitude of first order low pass filter transfer function H(&omega;) = 1/(1 + &omega;) in decibels]]
 +
 +
*The magnitude of the transfer function is approximately 1 at low frequ

Revision as of 16:43, 23 September 2008

Op amp circuit example

File:Transimpedance amplifier with low pass.jpg
Transimpedance amplifier with low pass filter capacitor
For convenience, let $ s = i\omega $. The impedance of the capacitor is $ \frac{1}{Cs} $
Applying the golden rule: $ v_+ = v_- = 0 $
KCL at the $ V_- $ node: $ i_{in} + \frac{V_A}{R_1} + \frac{V_O}{1/Cs} = 0 $
Simplifying: $ R_1 i_{in} + V_A + R_1 C s V_O = 0 $
Solving for $ V_A $: $ V_A = -R_1 i_{in} - R_1 C s V_O \quad \quad (1) $
KCL at the $ V_A $ node: $ -\frac{V_A}{R_1} - \frac{V_A}{R_2} + \frac{V_O - V_A}{R_3} = 0 $
Simplifying: $ V_A \left ( R_2 R_3 + R_1 R_3 + R_1 R_2 \right ) = V_O \left ( R_1 R_2 \right ) $
Solving for $ V_A $: $ V_A = \frac{V_O ( R_1 R_2 )}{R_1 R_2 + R_1 R_3 + R_2 R_3} \quad \quad (2) $

Characteristics of the low pass frequency response

Magnitude of first order low pass filter transfer function H(ω) = 1/(1 + ω) in decibels
  • The magnitude of the transfer function is approximately 1 at low frequ