Difference between revisions of "Aligning the optical trap"

From Course Wiki
Jump to: navigation, search
(Created page with "{{Template:PrecisionMeasurement}} {| |- valign="top" | __TOC__ | Laser tweezers based on the ThorLabs OTKB optical trap kit. |} =...")
 
Line 5: Line 5:
 
| [[Image:OpticalTrap.JPG|thumb|center|top|480px|Laser tweezers based on the ThorLabs OTKB optical trap kit.]]
 
| [[Image:OpticalTrap.JPG|thumb|center|top|480px|Laser tweezers based on the ThorLabs OTKB optical trap kit.]]
 
|}
 
|}
==Instrument overview==
+
==Setup and alignment==
===Block diagram===
+
===Connecting the electronics===
[[Image:OpticalTrapBlockDiagram.PNG|thumb|right|400px|Optical trap block diagram.]]
+
[[Image:OpticalTrapPiezoDriverConnectionDiagram.PNG|thumb|right|400px|'''Piezo driver connection diagram for X axis.''' ]]
 +
Some optical trap measurements (such as Stokes calibration, DNA tether measurement, and force clamping) require precise, computer-controlled movement of the sample. The [http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2386 Nanomax stage] that holds the sample includes piezoelectric elements that can translate the sample over a range of approximately 20 microns in the X, Y, and Z directions. To control the position, a [http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2421 piezo driver] applies a voltage across the piezoelectric element. The driver is part of a closed-loop system that also includes a [http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2423 strain gauge displacement sensor]. The sensor generates a feedback signal that varies linearly with the stage position.
  
A high-NA objective lens (L1) performs the dual functions of imaging the sample and focusing the trapping laser. L1 is a 1.25 NA, 100X, infinity corrected, oil immersion objective lens with a working distance of 0.65 mm. Its back aperture is 5mm in diameter.
+
The piezo driver can be controlled directly by computer; however, it cannot produce the smooth, complex motions needed for some measurements. Accordingly, an alternate scheme is used to facilitate precise computer control of the stage position. The stage is controlled by a software-generated offset signal from a [http://sine.ni.com/nips/cds/view/p/lang/en/nid/207096 digital-to-analog converter] connected to the computer. A differential instrumentation amplifier with unity gain is inserted in the piezo driver's control loop. The amplifier subtracts a the software-generated offset from the strain gauge reader's output. In response to a change in the offset voltage, the piezo controller adjusts the stage position until the set point is reestablished. The responsivity of the strain gauge reader is about 0.45 Volts per micron. Thus, a one volt change in the offset voltage produced by the DAC results in a movement of about 2.2 microns.
  
L7 focuses an image of the LED illuminator in the backplane of the condenser lens L2 to provide collimated transillumination in the sample plane. L2 is a .25 NA, 10X, infinity corrected objective lens with a 7 mm working distance. Steering mirror M1 and tube lens L3 complete the imaging path. L3 is a 1" diameter, uncoated plano convex lens with a focal length of 200 mm. L3 forms an image of the sample plane on the detector of a CCD camera placed at a distance of 200 mm. (For best performance, the distance between L3 and the CCD imager must be accurate.)
+
The offset scheme is implemented on the X and Y axes only.
  
The trapping laser beam emerges from a fiber coupler with a diameter of approximately ??mm. Lenses L4 and L5 (focal lengths ?? and ??, respectively) implement a Galilean telescope that expands the beam by a factor of 4. To minimize aberrations and reflections, L4 and L5 are IR-coated achromatic doublet lenses. Dichroic mirror D1 deflects the collimated trapping beam toward L1.
+
<html>
 +
<div align="center">
 +
<table border="1">
 +
<tr><td>
 +
<iframe src="http://techtv.mit.edu/embeds/23410?size=custom&amp;custom_width=544&amp;player=simple&amp;external_stylesheet=" frameborder="0" width="544" height="338"></iframe>
 +
</td></tr>
 +
<tr><td>
 +
<b><div align="center">Caption</div></b>
 +
</td></tr>
 +
</table>
 +
</div>
 +
</html>
  
===Physical layout===
+
--- say something about QPD ----
[[Image:OpticalTrapLayout.PNG|thumb|right|480px|Optical trap layout.]]
+
  
==Setup and alignment==
 
 
===Remove the optics===
 
===Remove the optics===
 
===Collimating and adjusting the fiber port===
 
===Collimating and adjusting the fiber port===
Line 34: Line 44:
 
<object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object>
 
<object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object>
  
</html>
 
 
==OTKB software==
 
===Starting the software===
 
 
<html>
 
<script type="text/javascript" src="http://html5.kaltura.org/js"></script>
 
<script type="text/javascript">
 
  mw.setConfig('EmbedPlayer.AttributionButton',false);
 
  mw.setConfig('EmbedPlayer.EnableOptionsMenu',false);
 
</script>
 
<object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_i5yndloo/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_i5yndloo/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object>
 
</html>
 
 
 
==Calibration==
 
===Measuring R by scanning a stuck bead===
 
===PSD method===
 
===Equipartition method===
 
===Stokes method===
 
<html>
 
<script type="text/javascript" src="http://html5.kaltura.org/js"></script>
 
<script type="text/javascript">
 
  mw.setConfig('EmbedPlayer.AttributionButton',false);
 
  mw.setConfig('EmbedPlayer.EnableOptionsMenu',false);
 
</script>
 
<object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_vzh3tc1f/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_vzh3tc1f/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object>
 
 
</html>
 
</html>
 
{{Template:20.309 bottom}}
 
{{Template:20.309 bottom}}

Revision as of 23:42, 1 April 2013

MIT Bioinstrumentation Teaching Lab

ImageBar 774.jpg

Laser tweezers based on the ThorLabs OTKB optical trap kit.

Setup and alignment

Connecting the electronics

Piezo driver connection diagram for X axis.

Some optical trap measurements (such as Stokes calibration, DNA tether measurement, and force clamping) require precise, computer-controlled movement of the sample. The Nanomax stage that holds the sample includes piezoelectric elements that can translate the sample over a range of approximately 20 microns in the X, Y, and Z directions. To control the position, a piezo driver applies a voltage across the piezoelectric element. The driver is part of a closed-loop system that also includes a strain gauge displacement sensor. The sensor generates a feedback signal that varies linearly with the stage position.

The piezo driver can be controlled directly by computer; however, it cannot produce the smooth, complex motions needed for some measurements. Accordingly, an alternate scheme is used to facilitate precise computer control of the stage position. The stage is controlled by a software-generated offset signal from a digital-to-analog converter connected to the computer. A differential instrumentation amplifier with unity gain is inserted in the piezo driver's control loop. The amplifier subtracts a the software-generated offset from the strain gauge reader's output. In response to a change in the offset voltage, the piezo controller adjusts the stage position until the set point is reestablished. The responsivity of the strain gauge reader is about 0.45 Volts per micron. Thus, a one volt change in the offset voltage produced by the DAC results in a movement of about 2.2 microns.

The offset scheme is implemented on the X and Y axes only.

<html>

<iframe src="http://techtv.mit.edu/embeds/23410?size=custom&custom_width=544&player=simple&external_stylesheet=" frameborder="0" width="544" height="338"></iframe>

Caption

</html>

--- say something about QPD ----

Remove the optics

Collimating and adjusting the fiber port

Initial laser alignment

Beam expander coarse adjustment

Condenser adjustment

Connecting the piezo stage

Fine adjusting the beam expander

<html> <script type="text/javascript" src="http://html5.kaltura.org/js"></script> <script type="text/javascript">

 mw.setConfig('EmbedPlayer.AttributionButton',false);
 mw.setConfig('EmbedPlayer.EnableOptionsMenu',false);

</script> <object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object>

</html>