Difference between revisions of "20.109(S07): Student presentations, module 2"

From Course Wiki
Jump to: navigation, search
m (69 revisions: Test transfer 20.109(S07) to HostGator)
 
(60 intermediate revisions by 27 users not shown)
Line 1: Line 1:
 
{{Template:20.109}}
 
{{Template:20.109}}
  
The list of papers below is provided as a guideline for the types of papers that might be relevant for your presentation. You will notice that the papers fall roughly into three categories- description/optimization of fluorescent variantsmeasurements using fluorescent proteins, and reports describing the biological role of calcium signals.
+
The list of papers below is provided as a guideline for the types of papers that might be relevant for your presentation. You will notice that the papers fall roughly into three categories- calcium imaging sensors and methodsprotein reporters for imaging, and smart molecules in cell and systems biology.
  
You are not limited to the following list of primary research articles. The list is provided simply to give you an idea of the kinds of subjects that could make suitable presentations for the class. Search [http://ncbi.nih.gov/PubMed/ pubmed] yourself to find articles of interest to you. Once you have decided on a paper for your presentation, please email it to nkuldell AT mit DOT edu. As you prepare your talk be sure to follow the [[20.109(S07):Guidelines for oral presentations| specific guidelines for oral presentations]] in this class.
+
You are not limited to the following list of primary research articles. The list is provided simply to give you an idea of the kinds of subjects that could make suitable presentations for the class. Search [http://ncbi.nih.gov/PubMed/ pubmed] yourself to find articles of interest to you. Once you have decided on a paper for your presentation, please email it to nkuldell AT mit DOT edu, and also "reserve" it by putting your (initials/lab section/team color) next to the listing here. As you prepare your talk be sure to follow the [[20.109(S07):Guidelines for oral presentations| specific guidelines for oral presentations]] in this class.
  
===Fluorescent variants===
+
==Calcium imaging sensors and methods==
#Mena MA, Treynor TP, Mayo SL, Daugherty PS. Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol. 2006 Dec;24(12):1569-71[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17115054&query_hl=25&itool=pubmed_docsum]
+
#Gilland, E., Miller, A. L., Karplus, E., Baker, R. & Webb, S. E. Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci U S A 96, 157-61 (1999).
#Cabantous S, Waldo GS. In vivo and in vitro protein solubility assays using split GFP. Nat Methods. 2006 Oct;3(10):845-54.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16990817&query_hl=25&itool=pubmed_DocSum]
+
#Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583-94. (2000).
#Ai HW, Henderson JN, Remington SJ, Campbell RE. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J. 2006 Dec 15;400(3):531-40. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16859491&query_hl=25&itool=pubmed_DocSum]
+
#Li, W., Fraser, S. E. & Meade, T. J. A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent. J. Am. Chem. Soc. 121, 1413-1414 (1999).
#Sommer JR, Alderson J, Laible G, Petters RM. Reporter System for the Detection of In Vivo Gene Conversion: Changing Colors From Blue to Green Using GFP Variants. Mol Biotechnol. 2006 Jun;33(2):115-22.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16757798&query_hl=25&itool=pubmed_DocSum]
+
#Lin, Y. J. & Koretsky, A. P. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38, 378-88. (1997). <font color = green><b>[SN/TR/Green]</b></font color>
#Kremers GJ, Goedhart J, van Munster EB, Gadella TW Jr. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry. 2006 May 30;45(21):6570-80. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16716067&query_hl=25&itool=pubmed_DocSum]
+
#Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19, 137-41. (2001). <font color = red> [EDLS/TR/RED] </font color>
#Fischer M, Haase I, Wiesner S, Muller-Taubenberger A. Visualizing cytoskeleton dynamics in mammalian cells using a humanized variant of monomeric red fluorescent protein. FEBS Lett. 2006 May 1;580(10):2495-502.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16638577&query_hl=25&itool=pubmed_DocSum]
+
#Niell, C. M. & Smith, S. J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941-51 (2005). <font color = green><b>[DS/TR/Green]</b></font color>
#Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J, Hadjantonakis AK. In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis. 2006 Apr;44(4):202-18.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16604528&query_hl=25&itool=pubmed_DocSum]
+
#Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature (2005). <font color = Purple><b>[MG/WF/Purple]</b></font color>
#Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol. 2006 May;24(5):577-81. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16648840&query_hl=1&itool=pubmed_DocSum]
+
#Palmer, A. E., Jin, C., Reed, J. C. & Tsien, R. Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101, 17404-9 (2004).
# Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech. 2006 Nov;69(11):933-9. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16941642&query_hl=1&itool=pubmed_DocSum]
+
#Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100, 7319-24 (2003). <font color=pink>[<b>IJ/WF/pink</b>]</font>
===Fluorescent assay development===
+
#Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271-82 (2003). <font color = green><b>[JAC/WF/Green]</b></font color>
#Papers (not reviews!) from [http://tsienlab.ucsd.edu/Publication.htm the Tsien lab]
+
 
#Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Methods. 2006 Nov 24 [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17126911&query_hl=1&itool=pubmed_docsum]
+
==Protein reporters for imaging==
#Kawai A, Takano S, Nakamura N, Ohkuma S. Quantitative monitoring of autophagic degradation. Biochem Biophys Res Commun. 2006 Dec 8;351(1):71-7.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17054905&query_hl=1&itool=pubmed_docsum]
+
#Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11, 450-4 (2005). <font color = blue> [ANK/TR BLUE] </font color>
#Pfleger BF, Pitera DJ, Newman JD, Martin VJ, Keasling JD. Microbial sensors for small molecules: Development of a mevalonate biosensor. Metab Eng. 2007 Jan;9(1):30-8.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17002894&query_hl=1&itool=pubmed_DocSum]
+
#Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269-72. (1998). <font color = blue> [ALJ/WF/BLUE] </font color>
#Xu X, Brzostowski JA, Jin T. Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol Biol. 2006;346:281-96.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16957297&query_hl=1&itool=pubmed_DocSum]
+
#Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K. & Tsien, R. Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97, 11990-5 (2000).
#Yee DJ, Balsanek V, Bauman DR, Penning TM, Sames D. Fluorogenic metabolic probes for direct activity readout of redox enzymes: Selective measurement of human AKR1C2 in living cells.Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13304-9. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16938874&query_hl=1&itool=pubmed_DocSum]
+
#Luker, K. E. et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A 101, 12288-93 (2004). <font color = gold> [RLW/WF Yellow] </font color>
#Demarco IA, Periasamy A, Booker CF, Day RN. Monitoring dynamic protein interactions with photoquenching FRET.Nat Methods. 2006 Jul;3(7):519-24. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16791209&query_hl=1&itool=pubmed_DocSum]
+
#Nagai, Y. et al. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol 18, 313-6 (2000). <b><font color = green> [NSZ/TR/Green] </font color></b>
#Tomazzolli R, Serra MD, Bellisola G, Colombatti M, Guella G. A fluorescence-based assay for the reductase activity of protein disulfide isomerase. Anal Biochem. 2006 Mar 1;350(1):105-12. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16434015&query_hl=1&itool=pubmed_DocSum]
+
#Paulmurugan, R. & Gambhir, S. S. An intramolecular folding sensor for imaging estrogen receptor-ligand interactions. Proc Natl Acad Sci U S A 103, 15883-8 (2006). <font color = blue><b>[KB/WF/Blue]</b></font color>
#Lo CJ, Leake MC, Berry RM. Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J. 2006 Jan 1;90(1):357-65. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16227503&query_hl=1&itool=pubmed_DocSum]
+
#Plautz, J. D., Kaneko, M., Hall, J. C. & Kay, S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632-5 (1997). <font color = red> [AGK/WF/RED] </font color>
#Runions J, Brach T, Kuhner S, Hawes C. Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot. 2006;57(1):43-50. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16207749&query_hl=1&itool=pubmed_DocSum]
+
#Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-72 (2004). <font color = gold> ML/TR/YELLOW </font color>
#Vrabioiu AM, Mitchison TJ. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature. 2006 Sep 28;443(7110):466-9. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17006515&query_hl=22&itool=pubmed_DocSum]
+
#Spotts, J. M., Dolmetsch, R. E. & Greenberg, M. E. Time-lapse imaging of a dynamic phosphorylation-dependent protein-protein interaction in mammalian cells. Proc Natl Acad Sci U S A 99, 15142-7 (2002).
===Calcium signaling===
+
#Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 6, 351-5 (2000). '''RA/WF/Pink'''
#Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):359-64[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16407163&query_hl=1&itool=pubmed_DocSum]
+
 
#Lnenicka GA, Grizzaffi J, Lee B, Rumpal N. Ca2+ dynamics along identified synaptic terminals in Drosophila larvae.J Neurosci. 2006 Nov 22;26(47):12283-93.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17122054&query_hl=33&itool=pubmed_DocSum]
+
==Smart molecules in cell and systems biology==
#Silomon M, Bauer I, Bauer M, Nolting J, Paxian M, Rensing H. Induction of heme oxygenase-1 and heat shock protein 70 in rat hepatocytes: The role of calcium signaling. Cell Mol Biol Lett. 2007;12(1):25-38.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17103089&query_hl=33&itool=pubmed_DocSum]
+
#Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263-8 (2005). <font color = red>[SW/TR/PINK]</font color>
#Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16704-9.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17075073&query_hl=33&itool=pubmed_DocSum]
+
#Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91, 664-8 (1994). <b><font color=red>[DY/TR/Red]</font color></b>
# Oliveira JM, Chen S, Almeida S, Riley R, Goncalves J, Oliveira CR, Hayden MR, Nicholls DG, Ellerby LM, Rego AC. Mitochondrial-dependent Ca2+ handling in Huntington's disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci. 2006 Oct 25;26(43):11174-86. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17065457&query_hl=33&itool=pubmed_DocSum]
+
#Glieder, A., Farinas, E. T. & Arnold, F. H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20, 1135-9 (2002). <font color=purple>[<b>HZ/TR/purple</b>]</font>
# Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A. Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide. Biochemistry. 2006 Oct 17;45(41):12547-59. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17029410&query_hl=33&itool=pubmed_DocSum]
+
#Jhaveri, S., Rajendran, M. & Ellington, A. D. In vitro selection of signaling aptamers. Nat Biotechnol 18, 1293-7 (2000).<font color=red>[<b>BCH/WF/red</b>]</font>
#
+
#Karpova, A. Y., Tervo, D. G., Gray, N. W. & Svoboda, K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48, 727-35 (2005). <b><font color=yellow>[MSO/TR/Yellow]</font color></b>
 +
#Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat Mater 1, 173-7 (2002). [<b>JS/WF/purple</b>] <font color=blue>[<b>KTLV/TR/blue</b>]</font>
 +
#Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185-90 (2003). <font color=purple>[<b>MR/TH/purple</b>]</font>
 +
#Miller, J. C., Silverman, S. K., England, P. M., Dougherty, D. A. & Lester, H. A. Flash decaging of tyrosine sidechains in an ion channel. Neuron 20, 619-24 (1998).
 +
#Scott, Benjamin and Lois, Carlos. Generation of tissue-specific transgenic birds with lentiviral vectors. PNAS vol. 102, no. 45, 16443-16447 (2005). <font color = yellow> [<b>ER/WF/yellow</b>]</font>
 +
#Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Controlling signal transduction with synthetic ligands. Science 262, 1019-24 (1993).<b>(TG/WF/Green)</b>
 +
#Tanabe, T. et al. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat Methods 2, 503-5 (2005). <font color=red> [<b>JL/TH/pink</b>]</font>

Latest revision as of 15:32, 15 June 2015


20.109: Laboratory Fundamentals of Biological Engineering

Macintosh HD-Users-nkuldell-Desktop-20.109template.png

Home        People        Schedule Spring 2007        Lab Basics        OWW Basics       
Genome Engineering        Biophysical Signal Measurement        Expression Engineering        Biomaterial Engineering       

The list of papers below is provided as a guideline for the types of papers that might be relevant for your presentation. You will notice that the papers fall roughly into three categories- calcium imaging sensors and methods, protein reporters for imaging, and smart molecules in cell and systems biology.

You are not limited to the following list of primary research articles. The list is provided simply to give you an idea of the kinds of subjects that could make suitable presentations for the class. Search pubmed yourself to find articles of interest to you. Once you have decided on a paper for your presentation, please email it to nkuldell AT mit DOT edu, and also "reserve" it by putting your (initials/lab section/team color) next to the listing here. As you prepare your talk be sure to follow the specific guidelines for oral presentations in this class.

Calcium imaging sensors and methods

  1. Gilland, E., Miller, A. L., Karplus, E., Baker, R. & Webb, S. E. Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci U S A 96, 157-61 (1999).
  2. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583-94. (2000).
  3. Li, W., Fraser, S. E. & Meade, T. J. A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent. J. Am. Chem. Soc. 121, 1413-1414 (1999).
  4. Lin, Y. J. & Koretsky, A. P. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38, 378-88. (1997). [SN/TR/Green]
  5. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19, 137-41. (2001). [EDLS/TR/RED]
  6. Niell, C. M. & Smith, S. J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941-51 (2005). [DS/TR/Green]
  7. Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature (2005). [MG/WF/Purple]
  8. Palmer, A. E., Jin, C., Reed, J. C. & Tsien, R. Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101, 17404-9 (2004).
  9. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100, 7319-24 (2003). [IJ/WF/pink]
  10. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271-82 (2003). [JAC/WF/Green]

Protein reporters for imaging

  1. Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11, 450-4 (2005). [ANK/TR BLUE]
  2. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269-72. (1998). [ALJ/WF/BLUE]
  3. Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K. & Tsien, R. Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97, 11990-5 (2000).
  4. Luker, K. E. et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A 101, 12288-93 (2004). [RLW/WF Yellow]
  5. Nagai, Y. et al. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol 18, 313-6 (2000). [NSZ/TR/Green]
  6. Paulmurugan, R. & Gambhir, S. S. An intramolecular folding sensor for imaging estrogen receptor-ligand interactions. Proc Natl Acad Sci U S A 103, 15883-8 (2006). [KB/WF/Blue]
  7. Plautz, J. D., Kaneko, M., Hall, J. C. & Kay, S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632-5 (1997). [AGK/WF/RED]
  8. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-72 (2004). ML/TR/YELLOW
  9. Spotts, J. M., Dolmetsch, R. E. & Greenberg, M. E. Time-lapse imaging of a dynamic phosphorylation-dependent protein-protein interaction in mammalian cells. Proc Natl Acad Sci U S A 99, 15142-7 (2002).
  10. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 6, 351-5 (2000). RA/WF/Pink

Smart molecules in cell and systems biology

  1. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263-8 (2005). [SW/TR/PINK]
  2. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91, 664-8 (1994). [DY/TR/Red]
  3. Glieder, A., Farinas, E. T. & Arnold, F. H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20, 1135-9 (2002). [HZ/TR/purple]
  4. Jhaveri, S., Rajendran, M. & Ellington, A. D. In vitro selection of signaling aptamers. Nat Biotechnol 18, 1293-7 (2000).[BCH/WF/red]
  5. Karpova, A. Y., Tervo, D. G., Gray, N. W. & Svoboda, K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48, 727-35 (2005). [MSO/TR/Yellow]
  6. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat Mater 1, 173-7 (2002). [JS/WF/purple] [KTLV/TR/blue]
  7. Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185-90 (2003). [MR/TH/purple]
  8. Miller, J. C., Silverman, S. K., England, P. M., Dougherty, D. A. & Lester, H. A. Flash decaging of tyrosine sidechains in an ion channel. Neuron 20, 619-24 (1998).
  9. Scott, Benjamin and Lois, Carlos. Generation of tissue-specific transgenic birds with lentiviral vectors. PNAS vol. 102, no. 45, 16443-16447 (2005). [ER/WF/yellow]
  10. Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Controlling signal transduction with synthetic ligands. Science 262, 1019-24 (1993).(TG/WF/Green)
  11. Tanabe, T. et al. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat Methods 2, 503-5 (2005). [JL/TH/pink]