20.109 Spring 2014 Mod 2 – Lecture 6 **System Engineering and Protein Foundations**

Agi Stachowiak **Shannon Hughes Aneesh Ramaswamy** Suhani Vora (TA) Leona Samson (Lectures) Zachary Nagel (help with development)

What experimental question will you ask in Module 2?

How efficiently does DNA repair by the Non Homologous End Joining (NHEJ) pathway act on DNA damage with different topologies?

This raises the following questions

- How does DNA get damaged?
- What is DNA repair?
- Why does DNA repair exist?
- Why do we care about how efficient DNA repair is?
- How does one actually measure DNA repair efficiency?

NIH DIRECTOR'S

PIONEER A•W•A•R•D

CANDIDATE INTERVIEW June 16th 2009, 8am! Developing Novel Methods to Measure DNA Repair Capacity in Human Populations

Leona D. Samson

MIT

Biological Engineering Department Biology Department Center for Environmental Health Sciences Koch Institute for Integrative Cancer Research Computational and Systems Biology Initiative Broad Institute (Harvard and MIT)

SNPs – GWAS Genome sequencing

mRNA (miRNA, IncRNA) Profiling Exome Sequencing

Proteomic Analyses

In vitro / <u>In vivo</u> Functional Assays

The Proposal was based on the Pioneering work of:

Dr. Lawrence Grossman (1924–2006)

Dr. Qingyi Wei

Reactivation of UV damaged DNA by Host cell Reactivation (HCR) Athas & GROSSMAN Cancer Res. 1991

Athas & GROSSMAN

[CANCER RESEARCH 51, 5786-5793, November 1, 1991]

Adapted from GROSSMAN and Wei (1995) Clinical Chem 41: 1854-1863

XP frequency = ~1:250,000 giving theoretically ~28,000 cases worldwide with 2,000-fold increased skin cancer risk

Even if just 1% of the population is relatively repair deficient, could have tens of millions with several-fold increased risk

Case-Control Study monitoring DNA Repair Capacity (DRC) by Host Cell Reactivation (HCR) of plasmids containing DNA damage

[[]CANCER RESEARCH 54, 437-44(i, January 15, 1994]

Qingyi Wei, Genevieve M. Matanoski, Evan R. Farmer, Mohammad A. Hedayati, and Lawrence GROSSMAN

Low NER Repair status combined with excessive sun exposure is very dangerous

Wei Q, Matanoski GM, Farmer ER, Hedayati MA, GROSSMAN L. Proc Natl Acad Sci U S A. 1993 90:1614-8.

Virtually all case/control HCR studies have monitored Nucleotide Excision Repair (NER)

TABLE III - HCR-DRC FOR RISK OF CANCERS

Mutagen	Cancer type	Number Case/control	Risk estimate	Reference
BPDE	Lung	51/56	5.70 (2.10-15.7)	Wei et al. 1996 ²⁵
	Lung, nonsmall cell	467/488	1.85(1.42 - 2.42)	Shen et al. 2003 58
	Lung	764/677	1.50(1.10-3.10)	Spitz et al. 200337
	SCCHN	55/61	2.20 (1.02-4.77)	Cheng et al. 199861
	Breast	69/79	3.36 (1.15-9.80)	Shi et al. 2004 ⁶⁴
NNK	Lung, adenocarcinoma	48/45	3.21 (1.25-8.21)	Wang et al. 200759
UV	BCC	146/333	1.62(1.07 - 2.45)	Wang et al. 200763
	SCC	109/333	1.63 (0.95-2.79)	0
	CM	312/324	2.02 (1.45–2.82)	Wei et al. 200262

BPDE, benzo(a)pyrene diol epoxide; UV, ultraviolet; SCCHN, squamous cell carcinoma of head and neck; BCC, basal cell carcinoma; SCC, squamous cell carcinoma; CM, cutaneous melanoma.

Chunying Li, Li-E. Wang and Qingyi Wei* Int. J. Cancer: 124, 999–1007 (2009)

NIH DIRECTOR'S

PIONEER A•W•A•R•D

CANDIDATE INTERVIEW June 16th 2009, 8am! Developing Novel Methods to Measure DNA Repair Capacity in Human Populations

Leona D. Samson

MIT

Biological Engineering Department Biology Department Center for Environmental Health Sciences Koch Institute for Integrative Cancer Research Computational and Systems Biology Initiative Broad Institute (Harvard and MIT)

Reactivation of damaged DNA - multiplexed

http://www.genlantis.com/corp/images/gWiz_vectmap.gif

Reactivation of damaged DNA - multiplexed

Before trying different damages - tried different doses of the same damage (UV)

Sanity Check: Is it even feasible detect 5-colors independently?:

2-color versus 5-color HCR of UV-irradiated plasmids

UV HCR: XPA - deficient cell line at 16 hours

FM-HCR for UV damaged Plasmids (Nucleotide Excision Repair)

Development and field-test validation of an assay for DNA repair in

circulating human lymphocytes. Cancer Res. 1991 51:5786-93.

Athas, Hedayati, Matanoski, Farmer & GROSSMAN

Cell line	Phenotype	Mean ± SD	n	95% CIª	%CAT300
GM0536	Apparent normal	385 ± 60	3	235-534	59.4
GM0892	Apparent normal	595 ± 22	4	559-630	57.1
GM1953	Apparent normal	717 ± 78	3	523-91	67.7
GM1989	Apparent normal	594 ± 76	3	406-783	58.0
GM3657	Apparent normal	381 ± 15	4	357-405	47.0
GM2250	XP-A homozygote	90 ± 9	3	67-112	3.0
GM2344	XP-A homozygote	132 ± 9	3	110-155	6.4
GM2345	XP-A homozygote	90 ± 9	3	69-111	3.0
GM2246	XP-C homozygote	165 ± 19	4	134-195	22.1
GM2249	XP-C homozygote	256 ± 12	5	241-270	31.2
GM2253	XP-D homozygote	75 ± 5	3	62-88	1.8
GM2485	XP-D homozygote	97 ± 12	3	67-125	4.5
GM2450	XP-E homozygote	312 ± 42	5	260-364	

How does our FM-HCR data stack up against CAT-HCR, Grossman *et al.*, > 20 years ago?

Cancer Research. 1991; 51 (21): 5786-93

How does our FM-HCR data stack up against CAT-HCR, Grossman *et al.*, > 20 years ago?

Cancer Research. 1991; 51 (21): 5786-93

 $R^2 = 0.92, p = 0.0006$

 $R^2 = 0.92, p = 0.0001$

5-color HCR developed by Dr. Zachary Nagel

DNA Repair Strategies

Direct Reversal

Methyltransferase, Oxidative demethylase

Excision Repair

Base excision, nucleotide excision, mismatch repair

• Double strand break repair

Homologous recombination, Non-homologous end joining

DNA Repair Strategies

Direct Reversal

Methyltransferase, Oxidative demethylase

Excision Repair

Base excision, nucleotide excision, mismatch repair

• Double strand break repair

Homologous recombination, Non-homologous end joining

Non-Homologous End Joining (NHEJ) DNA Double Strand Break Repair

Non-Homologous End Joining (NHEJ)

end DSB in the 5' UTR

NHEJ HCR in WT and NHEJ defective cells:

DNA Mismatch Repair

Nature Reviews | Immunology

https://www.google.com/search?q=dna+mismatch+repair&tbm=isch&tbo=u&source=univ&sa=X&ei=pipkUraXMun-4AOAloGgBw&ved=0CDkQsAQ&biw=1067&bih=501&dpr=1#facrc=_&imgdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fjournal%252Fv2%252Fn8%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fjournal%252Fv2%252Fn8%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fjournal%252Fv2%252Fn8%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fjournal%252Fv2%252Fn8%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fjournal%252Fv2%252Fn8%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fjournal%252Fv2%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fwww.nature.com%252Fnri%252Fv2%252Fnmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%253A%252F%252Fmmagdii=_&imgrc=a7bj74c8D9MBtM%3A%3BYVLE34T6L3YPAM%3Bhttp%25A%252F%252Fmmagdii=_&imgrc=a

How to build a site-specific reporter? "Primer-Extension"

Original protocol from Baerenfaller *et al.* **2006** *Meth in enzymology* 29 Modified and optimized by Alex Chaim, Zachary Nagel and Patrizia Mazzucato

DNA Mismatch Repair (MMR)

MMR assay distinguishes between proficient and deficient cell lines:

*O*⁶-Methylguanine DNA Methyltransferase MGMT

Many Cancer Chemotherapy Drugs induce this lesion in DNA

Alkylating agents used in the cancer clinic

DNA lesions from an RNA polymerase perspective

Direct Reversal of O⁶-Methylguanine

Direct Reversal of O⁶-Methylguanine

Direct Reversal of O⁶-Methylguanine

MGMT deficient cells are distinguished by a high level of reporter expression:

Base Excision Repair (BER)

For oxidized, deaminated and alkylated base damage

DNA Glycosylases

Bifunctional (β elimination)	OGG1	8-oxoguanine DNA glycosylase		
	NTHL1	nth endonuclease III-like 1		
	NEIL 3	Nei endonuclease VIII-like 3		
Monofunctional	UNG	Uracil DNA glycosylase		
	SMUG1	Single-strand-selective monofunctional uracil DNA glycosylase 1		
	TDG	Thymine DNA glycosylase		
	MBD4	Methyl-CpG binding domain protein 4		
	AAG	Alkyladenine DNA glycosylase		
	MUTYH	mutY homologue		
Bifunctional (β,δ elimination)	NEIL 1	Nei endonuclease VIII-like 1		
	NEIL 2	Nei endonuclease VIII-like 2		

Base excision repair of 8-oxo-G

8-oxo-guanine

OGG1 DNA Glycosylase

Alex Chaim

Base excision repair of 8-oxo-G

Base excision repair of 8-oxo-G

Alex Chaim

Base excision repair of 8-oxo-guanine

Alex Chaim

Measuring BER of 8-oxo-guanine

8-oxoG:C (24h) - MEFs

Alex Chaim

Base excision repair of Hypoxanthine (Hx)

- Found in DNA
 - Product of A deamination
 - Incorporated from the nucleotide pool across C
- Highly mutagenic
 - $A \rightarrow G$ transitions

Human (AAG), and Mouse (Aag) 3MeA DNA Glycosylases Act on Many Lesions

СН3

NH₂ N N N N N N N ONA

3meA

1meA

3meG

7meG

Hx

εA

8-oxoG

6

AAG: Alkyladenine DNA Glycosylase

Lau et al. PNAS. 2000. 97:13573-78.

Base excision repair of Hx

Base excision repair of Hx

Alex Chaim

Base excision repair of Hx

Alex Chaim

Measuring BER of Hx

Base excision repair of Uracil

Base excision repair of Uracil

Alex Chaim

Base excision repair of Uracil

Alex Chaim

Measuring BER of Uracil

MEFs (18h) lipofection

5-color HCR developed by Dr. Zachary Nagel

Started by Measuring DRC in 3 pathways

Started by Measuring DRC in 3 pathways in NER Separate NER Together 5 different cell lines

MMR Separate

GM02344 NER-deficient (XPA)

MT1 MMR-deficient (MSH6 null)

TK6+MGMT Overexpressing MGMT

(TK6 and GM1953 "WT")

Then Measured DRC in 4 pathways in a single assay:

Then Measured DRC in 4 pathways in a single assay (1 of 2):

Then Measured DRC in 4 pathways in a single assay (1 of 2):

Then Measured DRC in 4 pathways in a single assay (2 of 2):

Then Measured DRC in 4 pathways in a single assay (2 of 2):

Then Measured DRC in 4 pathways in a single assay (2 of 2):

A Plasmid-Based Assay for Homologous Recombination in Mammalian Cells

Bevin Engelward

A Plasmid-Based Assay for Homologous Recombination in Mammalian Cells

Virtually all case/control HCR studies have monitored Nucleotide Excision Repair (NER)

TABLE III - HCR-DRC FOR RISK OF CANCERS

Mutagen	Cancer type	Number Case/control	Risk estimate	Reference
BPDE	Lung	51/56	5.70 (2.10-15.7)	Wei et al. 1996 ²⁵
	Lung, nonsmall cell	467/488	1.85(1.42 - 2.42)	Shen et al. 2003 58
	Lung	764/677	1.50(1.10-3.10)	Spitz et al. 200337
	SCCHN	55/61	2.20 (1.02-4.77)	Cheng et al. 199861
	Breast	69/79	3.36 (1.15-9.80)	Shi et al. 2004 ⁶⁴
NNK	Lung, adenocarcinoma	48/45	3.21 (1.25-8.21)	Wang et al. 200759
UV	BCC	146/333	1.62(1.07 - 2.45)	Wang et al. 200763
	SCC	109/333	1.63 (0.95-2.79)	
	CM	312/324	2.02 (1.45–2.82)	Wei et al. 200262

BPDE, benzo(a)pyrene diol epoxide; UV, ultraviolet; SCCHN, squamous cell carcinoma of head and neck; BCC, basal cell carcinoma; SCC, squamous cell carcinoma; CM, cutaneous melanoma.

Chunying Li, Li-E. Wang and Qingyi Wei* Int. J. Cancer: 124, 999–1007 (2009)

Coriell Lymphoblastoid Cell line collection derived from ethnically diverse HEALTHY humans

450 healthy unrelated US residents with ancestry from around the globe

Nested subsets: 90, 44, <mark>24</mark>, 8 Ethical reasons: no medical, phenotypic, or ethnic information is provided

Extensive Range of Sensitivity in Cells Exposed to Alkylation Damage - Control Cell Lines

Extensive Range of Sensitivity in Cells Exposed to Alkylation Damage - Coriell Cell Lines

DRC vs. MNNG sensitivity

DRC vs. MNNG sensitivity

DRC vs. MNNG sensitivity

% Reporter Expression

Reactivation of damaged DNA - multiplexed

Reactivation of damaged DNA - multiplexed

DNA Repair Strategies

Direct Reversal

Methyltransferase, Oxidative demethylase

Excision Repair

Base excision, nucleotide excision, mismatch repair

• Double strand break repair

Homologous recombination, Non-homologous end joining

The Pioneer Team

Dr. Zachary Nagel

Carrie Thompson

Dr. Anwaar Ahmad

Isaac (Alex) Chaim

Patrizia Mazzucato

Siobhan McRee

Thanks to the NIH Director's Pioneer Award & the NIEHS!!!

DNA lesions from an RNA polymerase perspective

Dose-dependent reporter protein and reporter transcript expression from irradiated plasmids:

Transcriptional errors are induced by a site-specific thymine dimer

Ultimately want to measure DRC for every major DNA repair activity in many different cell types ideally derived from each individual

Modified from Power C , Rasko J E Ann Intern Med 2011;155:114-121