Overview of Module 3, Part II

Module 3, Lecture 7

20.109 Spring 2008

Dr. Agi Stachowiak

Topics for Lecture 7

- Module 3 overview
 - what does each day contribute?
 - how could the findings be extended?
 - briefly back to cartilage TE big picture
- Intro. to drug delivery (chalkboard)
 - today if we have time, or as first part of lecture 8

Overall goals of Module 3

- Design experiment to study effects of local environment on cell de-differentiation
 - <u>cell</u>: primary chondrocytes, *in vitro* culture
 - <u>local environment</u>: material properties, cell density, culture medium composition
 - <u>effects</u>: viability, morphology, collagen production
- Grander purpose: discovering factors that maintain chondrocyte phenotype has utility for cartilage tissue engineering
 - determine properties of construct desired to regenerate cartilage
 - conditions for *ex vivo* cell expansion and cell transplantation

Module overview: lab

Day 1: design

Day 2: seed cultures

Day 3: viability assay

Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

Day 8: your research ideas! 4

- Design parameters varied
 - change cell density in beads
 - architecture: 2D plastic vs. 3D alginate
 - type of alginate (viscosity, G/M ratio)
 - weight percent alginate
 - calcium cross-linker concentration
 - additives: collagen II, inhibitor of actin
 - application of compressive stress
- Some expectations
 - many conditions have tradeoff between viability and phenotype examples?
 - optimal alginate rigidity not known a priori from literature (data comparison issue)

- Morphology results
 - cells in 2D spread, cells in 3D round
 - results are consistent with our hypothesis, but morphology alone does not define cell type
- Viability/cytotoxicity results
 - mostly live cells in 2D samples
 - low cell recovery, variability in 3D samples
 - W/F Blue group: cell death in high calcium sample
 - T/R Purple+Red groups: possible cytotoxicity difference between Sigma and FMC alginate
 - potential explanations for results?

Alginate company	Alginate name	Viscosity	G/M Ratio
Sigma Aldrich	"low viscosity"	250 cps at 2%	"high M"
FMC Biopolymer	Protanal LF 120M	70-150 cps at 1%	~40/60
FMC Biopolymer	Protanal LF 10/60	20-70 cps at 1%	~70/30

W/F Green group

Extending viability/cytotoxicity assay

- Why do we test for viability/cytotoxicity?
 - desire biocompatible TE construct
 - avoid materials toxic to cells
 - necrotic cells in turn can promote inflammation, vicious cycle
- How can we improve our assay?
 - improve recovery of cells from alginate with longer EDTA incubation and/or spin step
 - improve signal:noise with longer dye incubation
 - increase cell concentration, thus statistical reliability of data
- How can we learn more?
 - test for type of toxicity (apoptosis vs. necrosis), proliferation

Utility of modeling+simulations

- Model: mathematical description of physical phenomenon
 - e.g., relation between concentration of a diffusing species, its diffusivity, and distance traveled (macroscopic)
 - perform curve-fitting with real data to calculate parameters (Mod2)
- Simulations: apply models to compute "experiments"
 - e.g., follow the path of individual diffusing particles
 - often link a microscopic known and macroscopic unknown
- Example of TE relevance
 - diffusion of oxygen/nutrients tends to have ~100 μm limit
 - dependence on material permeability and pore structure: thus, modeling may fuel design of better TE constructs

1. design scaffolds \rightarrow 2. model diffusion \rightarrow 3. make best designs

→ 4. test scaffolds, compare to model → 5. redesign

- Many collagen II:I ratios > 1, even for 2D samples
- Some bands too faint to get picture and quantify
- T/R Red group: high viscosity ratio > low viscosity II:I ratio

- W/F Blue group: no collagen II in high calcium sample?
- W/F Red group: 3D compression (II:I) > 3D control (II:I)
- Sources of error
 - low spec. readings
 - no re-blanking on spec.
 - protein contamination in RNA
 - no loading control to test above
- Other confounding issues
 - 2D cells not split often enough
 - cow-to-cow variation

How can we extend this assay?

- Improve RNA measurement
- Run different dilutions of DNA
 - could have time to do this on Day 6 or 7 after seeing first round results
 - extends dynamic range of assay
- Co-amplification of internal control
 - housekeeping gene should not change expression based on culture method
 - thus serves as loading control
- Test whether primers for I and II are equally efficient at amplification
 - G/C content and location (ends)
 - potential for primer hairpins, dimers
- Quantitive (real-time) PCR

Image from: Caterson et al., *J Biomed Mater Res* **57**:394 (2001)

High throughput gene expression assay: microarrays

- Isolate total RNA from cells, as we did
- Make cDNA *pool* using -TTTT- primers
 - selects all mRNAs, mixed amplification product
 - contrast PCR: specific primers to amplify one cDNA
- Distinguish two experimental conditions
 - one RNA pool gets oligo dT with to red fluorophore
 - other gets oligo dT conjugated to green fluorophore
- Hybridize cDNA pool to microarray
 - microarray contains complementary cDNA pool
 - one DNA per tiny spot
 - potentially reflects entire genome
- Red vs. green fluorescence shows *relative* gene expression between two samples

Red: Gene A expression in 1 > 2

Yellow: Gene B¹ expression equal in conditions 1 and 2 13

- ELISA results overall
 - a few folks *clearly* saw CN II presence in their 3D sample, but not in 2D sample or any supernatants
 - many folks saw *possible* CN II signal (above blank, but below lowest standard) in their samples
 - CN I assay not fully optimized: slow development, but some signal
- Main advantage of ELISA in our experiment?
 - recognizes proteins in native state (not so in typical Western)
- How could we improve results next time around?
 - optimize antibody amounts, incubation times, etc.
 - optimize sample collection: take supernatant *after* trypsinization, lyse cells for internal (vs. surface) proteins
 - perform sandwich ELISA: improved sensitivity why?
- Overall, what might you test/do differently next time?
 - hard to change just one parameter for natural materials

Cartilage TE: from models to therapy

- Experiments *in vitro*
 - cell lines or primary cells in different cultures
 - assay gene expression, protein production, cytotoxicity, mechanical properties
- Experiments in vivo
 - small and large animal models
 - animal can undergo new therapy (e.g., scaffold-cytokine combo) and compare to standard surgery
 - more realistic toxicity, tissue growth results
 - must develop implantation, retention strategies
- Clinical treatment
 - autologous chondrocyte implantation (ACI) used clinically
 - cell culture technique and treatment marketed as *Carticel* by Genzyme [www.carticel.com]
 - meant for small defects from injury, not pervasive disease

Y. Liu et al. *Tissue Eng* **12**:3405 (2006)

Comparing TE strategies

- Cell therapy alone
 - pro: no* introduction of foreign material
 - requires biopsy and time for expansion
 - requires some retention mechanism, may leak
- Cytokine therapy alone
 - pro: simplicity (injection at site)
 - repeated injections, cytokine production costly, limited efficacy
- Scaffold+cytokine therapy
 - pro: slow release of cytokine
 - difficulty developing appropriate scaffold: non-toxic, degrades at correct rate, cytokine stays functional
- Scaffold+cells therapy
 - pro: cells themselves could make cytokine indefinitely
- Scaffold+cytokine+cells
 - combine advantages to address early- and late-stage needs

Drug delivery topics to cover

- · Goals of drug delivery/controlled release field
- Methods of engineering delivery timecourse
- Human practice issues raised (pros/cons)