- Announcements
- Lab Quiz
- Pre-lab Lecture
 - Review PCR and homework
 - DNA Electrophoresis
 - DNA Ligation, part 1
 - Today in Lab: M1D3

Announcements

- Lab practical coming up Tue, Oct. 4th
- Close look at PCR product:

Fixing FNT M1D1

would like resubmission on index card

Primer design

- •How to retrieve seq, in gen'l
- How to find relevant part
- Design of landing seq (length? Tm? GC?)
- •Design of flap seq (cloning?)
- Hints for reverse primer
- Other things to check

PCReaction details

•Components:

what?

volume mass or conc?

how to assemble?

Cycling conditions:

anneal temp?

extension time?

General note: be cautious with wording taken directly from wiki

Hardin next time wold HW

Slide from N. Kuldell

DNA Electrophoresis (EP): Principle

Agarose gel

DNA

Agarose and DNA are both
Lio phlymins in have
molec. entargle ments

DNA moves— to +because of phosphati

Separation is according to: $\leq i \neq e$

5 maller DNA moves faster because entagements 15 itc

DNA EP: Visualization

Loading dye: 94(erol -> DNA sonk into wells xyland cyanol -> visual tracking dye

Ethidium bromide: fluoresces under UV

if bound to DNA

DNA EP: Analysis

DNA ladder: Aandards of Known Size

Controls:

uncut plasmid > 2 forms

single xut 12 > 11 hear

Sample:
for analysis (MID5)

Relationship:

DNA EP: Clean-up and Safety

 Use nitrile gloves when handling DNA gels and all equipment used for gels.

 Wear eye protection/face shields when cutting DNA bands out of the gel.

 Gels and gel-contaminated papers are disposed of in solid chemical waste.

DNA extraction from agarose gel

- Another Qiagen kit: similar principles but different buffers
 - In addition to buffer composition, size of the silica beads can affect what is retained

Mixture should ideally look yellow, not blue

Preparing for DNA ligation

Ethidium intensity reflects absolute DNA amount.

Backbone	Length = X bp
Insert	Length = X/4 bp

Equal intensity of insert and backbone means that the DNA amounts in the two lanes are $\frac{e_5}{\sqrt{2}}$. This means an equal $\frac{\sqrt{2}}{\sqrt{2}}$ ratio and unequal $\frac{\sqrt{2}}{\sqrt{2}}$ ratio of DNA.

Determining bkb:ins ratio

What if bkb:ins 1:100?

What if bkb:ins 100:1?

Why have insert in slight excess?

Today in Lab: M1D3

- Load agarose gels
 - Bring pipets, piece of tape, but no tips
 - Can train two groups at a time, queue up
- While gel runs, presentation on figure-making
- Isolate and set aside DNA
 - Two groups simultaneously view gel with me
 - small pieces! One group at a time isolates DNA
 - Help keep everyone moving through this part!