M1D1: Prepare CometChip microwell array and practice cell culture

09/11/17

- 1. Lab Orientation Quiz
- 2. Pre-lab Discussion
- 3. ½ class goes to the Tissue Culture Room
- 4. ½ class prepares a CometChip

Office Hours

Noreen

Monday 2pm-5pm in 16-317

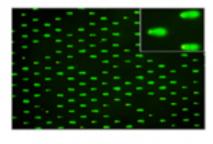
Leslie

Thursday 2-3pm Friday 12-1pm in 56-341c

Josephine Wednesday 12-1pm

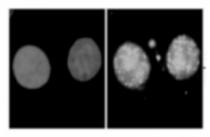
Friday 2-3pm

M1 major assignments


- Data summary (15%)
 - In teams, submit on Stellar
 - Draft due 10/8, final revision due 10/20
 - Bullet points, .PPTX
- Mini-presentation (5%)
 - Individual, submit video via Gmail
 - Due 10/13
 - Lab quizzes –be on time!
 - M1D4 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - Due 10/9 at 10pm, graded by Corban
 - Due 10/9 at 10pm, graded by Corban
 - Blog: https://be20109f18.blogspot.com (part of 5% Participation)
- by 10/9

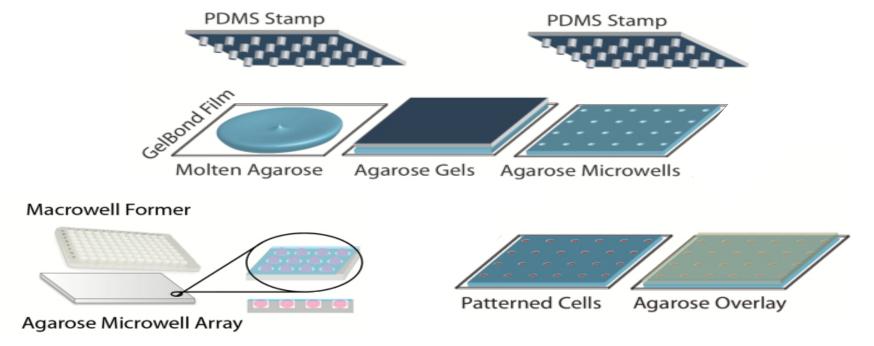
Overview of Module 1: Measuring Genomic Instability

1. Optimize comet chip assay


Test loading variables

2. Use comet chip assay to measure DNA damage

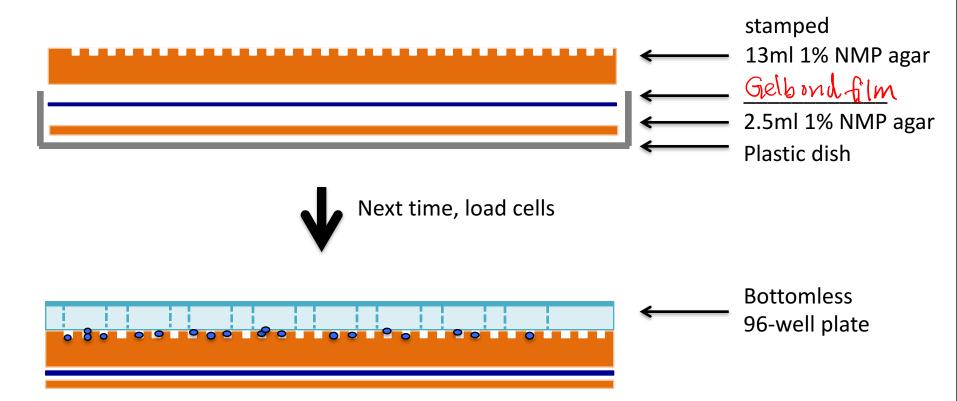
Measure effects of H₂O₂ on +/- DNA-PK cell lines


Protein involved in DNA Poair

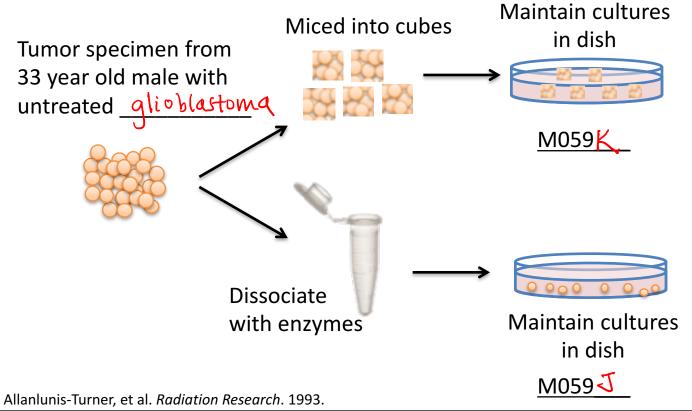
3. Use immuno-fluorescence assay to measure DNA damage

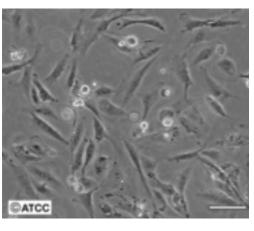
Examine effect of H₂O₂ on yH2AX foci formation

Overview of this week: Create a CometChip & optimize cell loading

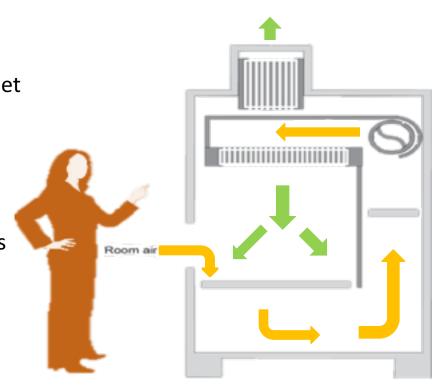


What is the minimum number of cells needed in each macrowell to obtain efficient loading?


Overview of next week: Assess DNA damage in tumor cells with & without DNAPKcs


Treat captured cells in comet chip with H_2O_2 (oxidative damage) Agarose Electrophoresis Lyse cells & unwind DNA (DNA still captured agarose in overlay) **Analysis** via Stain DNA and image via Matlab fluorescence microscopy

Today, make a CometChip


Background: Two glial cell lines— M059J (-DNAPKcs) and M059K (+DNAPKcs)

Tissue culture sterile technique

- 70% ethanol everything:
 - Wipe cabinet before and after use
 - Wipe everything that enters the cabinet
 - Do not spray cells with EtOH
- Do not disturb air flow:
 - Do not block grille or slots
 - Minimize side-to-side arm movements
 - Work > 6" away from sash
 - Leave blower on always
- Do not talk into incubator!
- Only open sterile media in hood

Mammalian cell culture medium

What do cells need to survive?

Food:

- DMEM (Dulbecco's Modified Eagle's medium) : F12 (defined)
 - · amino auds
 - sugars
 - · salts

· phend red - pH indicator

prevent bacterial growth

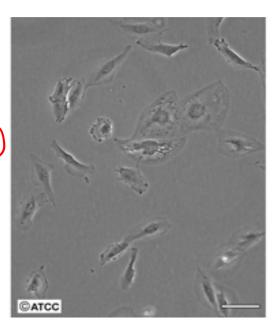
- · pt buffers
- ·vitamins

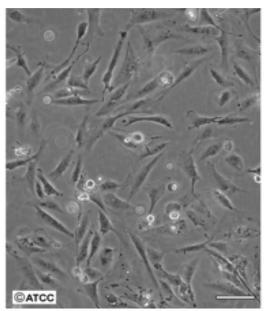
- · growth factors - cholesterols
- . lipids

· cytokines

Non-food:

- antibiotics:
 - penicillin
 - streptomycin



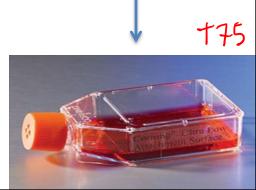

Mammalian cell culture terminology

- Confluence density
- Splitting (subculturing) ~ 80% confluent, put cells on new dish
- Seeding

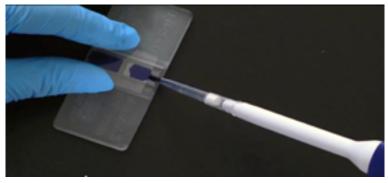
~ 20-409. of confinent culture on to new dish Low Density

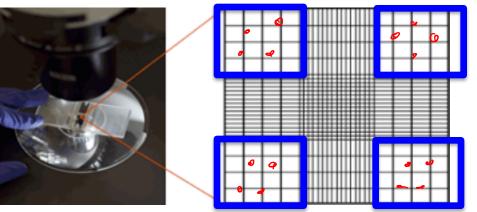
High Density

General steps for splitting cells +WHY?

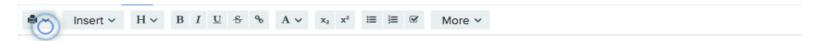

- Look at cells, estimate confluence
- Wash away dead cells, debn's, auti-typsin agents 3. Detach cells with trypsin (engine)
 - break substrate adhesions

2. Rinse with PBS


- 4. Count cells
- 5. "Seed" new culture vessel give room to grow


Be sure not to mix the two cell lines!

Counting Cells


- Hemocytometer:
- Trypan blue: Stains dead cells
- # cells / mL = 10,000 x
 average of 4 corners

What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Incomplete
Date of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
Hypothesis or goal / purpose	1	0.5	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Notes on protocol changes / clarifications	1	0.5	0
Observations	2	1	0
*Visual details			
*Qualitative information			
*Raw data			
Data analysis	3	1.5	0
*Calculations			
*Graphs and Tables			
Summary and interpretation of data	3	1.5	0
*What did you learn?			
*How does this information fit into the larger scope of the project?			
Information is clear	2	1	0
All days represented	1	0.5	0
OVERALL /15			

Due 10pm after each module, as posted on wiki http://engineerbiology.org/wiki/20.109(F18):_Assignments

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- · Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes.
- Include calculations.
- · Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(F18)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with Josephine and Corban
 - Right-click and choose 'settings'
 - Add collaborators by email address

Today in lab:

- 3 teams into tissue culture room to split cells (Red, Orange, Green)
- 2 teams start preparing CometChip (Yellow and Blue)
- 3. Make sure to keep notes in Benchling!
- Watch Engleward lab JOVE video during downtime (https://www.jove.com/video/50607/cometchip-high-throughput-96-well-platform-for-measuring-dna-damage)
- M1D2HW: Create a template for your benchling notebook and make a M1D2 entry from it.