M3D1: Growth of phage materials

Meet Jifa Qi & George Sun from the Belcher Lab

04/15/2016

As you know...

- Office hours this weekend
 - Saturday: 3pm-5pm in 56-302
 - Sunday: 11am-1pm and 2pm-5pm in 56-302
- System engineering research article due 5pm on 04/18
- Blog post(s) due 5pm on 04/19

On the horizon:

- M3 major assignments
 - Research proposal oral presentation (20%)
 - Homework
 - Mini-report (5%)

Use it once

When to use the

- Prior to M3D2: How do I identify where to start?
- Prior to M3D3: How do I identify what the knowledge gaps are currently in the field?
- Prior to M3D4: How do I identify the holes in my plan?
 By D4 you should be working toward fine-tuning your research proposal.
- Prior to M3D5: Ask for feedback:
 - Will my research plan (methods) answer my research question?
 - What are the expected results?
 - What if I do not get the expected results?
 - What will I learn if I get expected results?
 - What will I learn if I get unexpected results?
- Prior to M3D6 (presentation day): Ask for feedback on your slides
 - Do my slides convey my message clearly and appropriately?
 - Does my script convey my message clearly and appropriately?

We are in the homestretch!

3	1	R/F Apr 14/15	AB ⋳	Growth of phage materials	Homework due
		T/W Apr 19/20		Patriots' day holiday	System engineering research article due Mon, Apr 18 at 5 pm
3	2	R/F Apr 21/22	AB &	Phage nanowires	Homework due
3	3	T/W Apr 26/27	AB ₽	Cathode construction	Lab quiz Homework due
		R/F Apr 28/29	AB &	Lecture, but no laboratory	
	4	T/W May 3/4	AB ⋳	TEM	Homework due
3	5	R/F May 5/6	AB &	Battery assembly and testing	Lab quiz Homework due Biomaterials engineering mini-report due Thu/Fri, May 5/6 at 10 pm
3	6	T/W May 10/11		Research proposal presentations	Research proposal presentation slides due Tue/Wed, May 10/11 at 1pm
		R May 12		Feedback and celebratory lunch	

^{* (}informal) elevator pitches for extensive feedback from Prof. Angela Belcher

Module 3: biomaterials engineering How does gold size/quantity affect battery capacity?

M13 phage genetics and structure

^{*} packaging / coat / capsid

Overview of M13 virus life-cycle

M13 is a nonlytic bacteriophage

Overview of phage display

M13 are engineer-able biomaterials

Our p8 coat protein was mutated to contain sequence DSPHTELP

negatively charged

 Modified p8 proteins bind single wall carbon nanotubes (SWCNT), iron and gold

M13 phage and biomineralization

• Examples from nature:

- Engineer M13 for biomineralization:
 - environmental conditions4 C, water
 - structural organization

long aspect ratio is a nanowire

 M13 provides scaffold for Li(FePO₄) cathode construction

diatoms

M13 nanowires as battery cathode

Phage titer:

- by plating: plaque assay
 - phage slows E. coli growth
 - plaque-forming units: PFU/mL

DNA+proteins

background

by spectrophotometry

phage / mL =
$$\frac{(6 \times 10^{16}) (A269 - A320)}{\text{# bases in phage genome}}$$

quartz cuvettes are expensive!

Today in lab...

- Purify phage stop at Part 1, step 6: one hour incubation
- Add gold nanoparticles
- Begin Fe(III)-phage-AuNP biomineralization

