Cartilage TE: *in vitro* and *in vivo* models and assays

Module 3, Lecture 5

20.109 Spring 2008

Dr. Agi Stachowiak

Topics for Lecture 5

- Module 3 overview: week 3
- Gene and protein expression assays
- Models and assays in vivo
- Clinical relevance (if time today)

Module overview: lab

Day 1: design

Day 2: seed cultures

Day 3: viability assay

Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

Day 8: your research ideas! 3

Day 5: transcript analysis

Last time: amplified COL1A1 and COL2A1 cDNAs from cellular RNA isolates

Today: run cDNA on gel, compare intensities

- low dynamic range for DNA levels on gel
- potential loading variability
- what controls, changes would improve our assay?

Transcript-level assays

- RT-PCR (end-point)
 - advantages: simplicity, can be semi-quantitative
 - to quantify: co-amplify housekeeping gene
- q-PCR (real-time)
 - uses fluorescent DNA probes
 - advantages: quantitative, potential for multiplexing
 - quantitation may be done several ways
 - standard curve, with housekeeping normalization
 - efficiency-correction, allows comparison between genes
 - absolute quantification possible with radiolabeling
- Microarrays
 - advantages: high throughput (potential for genome-wide)
 - compare two experimental conditions using different fluorophores to tag the mRNAs
 - requires specialty equipment, more expensive
 - more complicated analysis (hence use of standards)

Current Protocols in Cell Biology, Molecular Biology

Day 5: image analysis

- Imaging data is often high throughput
 - potentially 4D: time-lapse, xyz
 - computation is required to extract meaningful results
 - human design and interpretation of analysis is also necessary
- Many commercially available analysis packages
 - specialty packages may run \$20-30K
 - NIH ImageJ freely available
- Your analyses (Day 5+6)
 - relative intensity and/or size of cDNA bands
 - automated counting of live cell populations
 - optionally, explore other features

Images from: T.R. Mempel, et al. *Nature* **427**:154 (2004) 7

What kinds of information can imaging provide?

- Static fluorescence intensities for cells
 - viability, apoptosis, or other cell state
 - staining of cytoskeleton or organelles
 - labeled antibodies can indicate presence of a certain receptor on cells, phosphorylated molecules, etc.
- Dynamic fluorescence intensities for cells
 - calcium (or other) fluxes using indicator dyes
 - tracking cell motility in different matrices
- Different images modalities provide different information
 - fluorescence vs. MRI
 - resolution, depth, coverage, signal:noise, etc.
- What do we learn from single-cell vs. population assays? What are the drawbacks of each?

Image from: M.J. Miller, et al. *PNAS* **100**:2604 (2003)

Non-invasive imaging

- MRI, tomography, ultraound, other techniques adapted from medical diagnostics
 - can be used to study gene expression
 - requires engineering reporter for the gene
 - can do whole-body optical modality with fluorescence or bioluminescence
- Example: monitoring angiogenesis
 - VEGF<u>R</u>2-*luc* (luciferase reporter)
 - slow- & fast-release VEGF in fibrin scaffolds
 - mice injected with luciferin (substrate) and observed for VEGF receptor upregulation
- Other uses? (think tumors)

M. Ehrbar, et al. *Biomaterials* **29**:1720 (2008) *Nature* News Feature **412**:372 (2001)

Day 5: protein analysis

· ELISA: enzyme-linked immunosorbent assay

10

Protein-level assays

- PAGE
 - advantage: relatively straightforward
 - detection limit of 0.3-1 ug/band for Coomassie,
 2-5 ng/band for silver
 - cannot distinguish two proteins of same MW
- Western blot
 - advantages: can distinguish specific proteins
 - detection limit ~1 pg (chemiluminescent)
 - only straightforward for denatured proteins
- ELISA
 - advantages: detects native state proteins, quantitative, high throughput, allows competition assays
- Also immunoprecipitation, histology, etc.

100 ng/mL protein

Specialty assays for cartilage TE

- Gene expression: collagen, aggrecan, cytokines
- Hydroxyproline content why?
- Collagen can be assessed in different compartments
 - supernatant, cell-associated matrix, and further-removed matrix
 - Ragan et al., Archive Biochem Biophys 383:256, 2000
 - acid or enzyme-soluble collagens
- Assessing proteoglycan content
 - precipitation of PG in supernatant by cetylpyridinium chloride
 - Western blots for different aggrecan domains/componenets
 - measuring PG average size, turnover
 - DMMB (dimethyl-methylene blue) dye how does it work?
- Mechanical testing
 - test starting tensile or compressive strength of material
 - test for cartilage-like properties after cell growth/ECM secretion

Revisiting in vitro cartilage TE

- Porous PLA scaffold + marrow cells
- Cells loaded in alginate vs. medium
 - round morphology, good cell retention
 - alginate alone somewhat chondrogenic

alginate+TGF more chondrogenic than PLA+TGF

Caterson et al., J Biomed Mater Res 57:394 (2001)

Scaffold-free cartilage TE

- Method: rotational culture of rabbit chondrocytes with no cytokines
- Results
 - Optimal combination of static+dynamic culture promotes stable construct
 - Dynamic cultures had fewer apoptotic cells
 - Microscopy revealed organized architecture
 - Peripheral region similar to in vivo
 - New ECM was primarily CN II and PG
- A scaffold-free method is inherently biocompatible
 - what are its disadvantages?
 - what advantages do cell-free methods have?

Dynamic, 3 d

Dynamic, 3 w

T. Nagai et al., *Tissue Eng* **14** (2008)

Example: in vivo rabbit model

- Y. Liu et al. *Tissue Eng* **12**:3405 (2006)
- Method: stem cells and/or injectable natural matrix (HA/gelatin) placed in 5-mm knee defects
- Results: matrix promoted greater area of cartilage formation, cells promoted better integration

Healing at 12 weeks

Group	Interval Until Animals Were Sacrificed (Wks)	Specimens n	Percentage Defect Filling	Articular Surface Continuity	Restoration of Osteochondral Architecture	Repair Tissue Integration	Cellular Morphology	Matrix Staining	Total Score
	4	8	1.25	0.25	0.13	0.25	0.00	0.00	1.88
Untreated	8	8	2.20	0.75	0.63	0.50	0.38	0.13	4.59
	12	8	3.12	1.00	1.00	1.13	0.13	0.25	5.63
	4	8	1.75	0.38	0.63	0.25	0.38	0.00	3.39
MSCs only	8	8	3.00	1.38	1.50	1.50	0.38	0.25	8.01
	12	8	3.63	1.25	2.13	1.25	1.25	2.13	11.64
	4	8	3.63	1.75	3.00	0.50	1.13	0.88	10.89
sECM only	8	8	3.63	2.00	3.25	0.50	1.25	2.13	12.76
	12	8	3.75	2.75	3.75	2.75	1.38	2.75	17.13
	4	8	3.75	2.50	3.25	1.50	2.00	2.38	15.38
MSCs + sECM	8	8	3.88	2.75	3.50	2.25	3.63	2.63	18.64
	12	8	4.00	3.00	4.00	3.00	4.38	3.00	21.38

Grade (Points)

Example: in vivo horse model

- D. Barnewitz et al. *Biomaterials* 27:2882 (2006)
- Method: biodegradable scaffold with autologous cells secured in full-thickness (8 mm) defect in horse
- Results
 - examined horses and dissected joints after 6-12 months
 - collagen and GAG amounts similar in repair and native tissue
 - histology and MRI showed implant integration, ECM formation
- What's new information (vs. *in vitro*), and what's missing?

Advantages of working in vivo

- Ability to mimic human disease-state
- Ability to mimic therapy/surgery applied to humans
 especially true for large animal models
- Can compare results to "gold standard" treatment
- The construct interfaces with an actual wound, the immune system, etc. more realistic environment
- Toxicity studies more meaningful

Cartilage pathology

- Cartilage has little regeneration capacity
- Acute damage early in life can promote later degeneration, e.g., osteoarthritis
- Osteoarthritis pathology
 - PG content in tissue goes down
 - PG and collagen degrade
 - higher water content
 - resulting reduction in strength
 - chondrocyte death
- Symptoms
 - pain, loss of movement ability

V.C. Mow, A. Ratcliffe, and S.LY. Woo, eds. *Biomechanics of Diarthrodial Joints* (Vol. I) Springer-Verlag New York Inc. 1990

Clinical treatments

- Strategy 1: enhance natural healing capacity
 - cytokine (or other biologic) administration
 - hyaluronic acid, TGF-B, IGF-1, BMPs
 - purposely damage subchondral bone
 - stimulate bone marrow stem cells
- Strategy 2: replace with fresh cartilage tissue
 - cell and/or scaffold implantation or injection
 - must be appropriately contained or anchored
 - total or partial joint replacement
 - with synthetic materials and/or donated tissue
 - invasive (arthroplasty) or fiber-optic (arthroscopy)
- Other treatments include
 - continuous passive motion
 - electrical stimulation
 - debridement (rid debris)

S.W. O'Driscoll. *J Bone Joint Surg* **80**:1795 (1998) S. Poitras, et al. *Arth Res Ther* **9**:R126 (2007)

Lecture 5: conclusions

- Imaging technologies are varied and powerful, and like any high-information assay require appropriate analysis.
- A variety of assays can be used *in vitro* and *in vivo* to test the success of cartilage and other TE constructs.
- TE constructs that enhance native cartilage repair (via cytokines) or fresh tissue regeneration (scaffolds and/or cell and/or cytokines, grown *in vitro* or *in vivo*) may both be clinically useful in treating osteoarthritis.

Next time: special topics in TE, Atissa on presenting with a partner