- Announcements, Review HW
- Lab Quiz
- Pre-lab Lecture
 - DNA Extraction (Miniprep)
 - Diagnostic Gel Review
 - Intro to Tissue Culture
 - Figure Captions (or at OH)
 - Today in Lab: M1D5

Results of pre-lab interaction survey

- Mostly #3 (hate talking in class), couple of straight up #1 (too easy) and #2 (too hard)
- Options/thoughts:
 - If the questions are fine, I could call on people instead of wait for volunteers... can be awkward though!
 - Alternatively you could talk in groups of four and then have one person speak for the group.
 - I will ask for others to speak up if only 1-2 people are talking; you don't need to self-censor.
 - Hearing things put another way (from a peer) can be very helpful to peoples' learning.
 - Explaining things yourself, out loud, is one of the best ways for you to learn!

Couple of HW notes

- PCR update
 - universal ORF finding
 - minimum primer length
 - reaction and cycling rules of thumb
- Figures/captions
 - need better labeling and full captions
 - will discuss in pre-lab (if time) or Monday OH

Announcements

- Lab practical next time! HW returned Monday.
- Please post your colony counts in talk page table before leaving – we'll discuss them next time
- Vacuum aspirators contain bleach for biohazardous waste (i.e., cells)
 - after bleach treatment, these go down the sink
- Chemical waste and sink-safe chemicals (w/ out cells) should not be aspirated
 - the former is a safety risk, the latter just a hassle

Extracting DNA from XL1-Blue

Step	Contains	Purpose
Prepare	Buffer, glucose =	> otherwise stable
Lyse	SDS ~ 6 Nat-	> disrupt solubiles lipid membranci/protety > denature ds->55 DNA
Neutralize	Acetic acid/KAc	neutralizeph, precipitate sos ochonica renature ods DNA "crashes
Transfer	N/A	Krep Superhatant
Wash, collect	A) EtOH B) dry, water –	> EtAHI INTENTERVAS
		Ly dig 25

Diagnostic DNA Gels

Choosing restriction sites for digest

BamHI Xhol

Practice Tissue Culture (TC)

MES = murine embryonic stem cells

More about mammalian cells next time

- Adherent cells
- Add trypsin to remove from dish
- Re-plate at lower density
 - → "passage" cells
- Practice counting

Figures: Style and Scope

- Title: concise, informative, tells overall goal/result
- Caption: gives <u>context</u> for result from big → small
 - Introduce what we are looking at
 - Include just enough methods to understand result
 - Define all elements (e.g., DNA ladder)
 - Cover primarily <u>facts</u>, not interpretation
 e.g., observed and/or expected sizes
- Aesthetics: simplicity, clarity

 at-a-glance labeling (e.g., some ladder band sizes)

Figures: Example

Figure 3 CCL21 impacts naïve T cell proliferation under conditions of rare Ag-specific T-DC encounters. Co-cultures comprising 9% OVA-specific OT-II CD4' T cells, 81% C57Bl/6 CD4' T cells, 5% OVA-mDC and 5% iDC with/without CCL21 were analyzed by flow cytometry at 85 h. (A) Sample CFSE histograms are shown for control (left, iDC only) and experimental (right, with OVA-mDC) conditions. (B) OTII cell recovery for all conditions is shown. Ave \pm std. dev. for 3 wells per condition. [* indicates bracketed conditions statistically different (p \leq 0.05)] (A-B) are from 1 representative of 5 experiments.

Today in Lab

- Miniprep three $\Delta 5$ -EGFP candidates, and bacteria transformed with pCX-NNX
 - tip: orient tubes in centrifuge
 - pCX-NNX = control for your technique
- Count and post colony #s
- TC practice session (half of class at a time)
 - don't need notebook, just a piece of scrap paper
- Set up digests
 - we will add loading dye if lab runs late
 - tip: make reaction cocktail → efficiency