Module Overview

Day	Lecture	Lab
1	Introduction	DNA library synthesis (PCR)
2	SELEX I: Building a Library	DNA library purification (agarose gel electrophoresis)
3	SELEX II: Selecting RNA with target functionality	RNA library synthesis
		(<i>In vitro</i> transcription = IVT)
4	SELEX III: Technical advances & problem-solving	RNA purification and heme affinity selection
5	Characterizing aptamers	RNA to DNA by RT-PCR
6	Introduction to porphyrins: chemistry & biology	Post-selection IVT
		Journal Club 1
7	Aptamer applications in biology & technology	Aptamer binding assay
8	Aptamers as therapeutics	Journal Club 2

Aptamer applications

20.109 Lecture 72 March, 2010

Today's Objectives

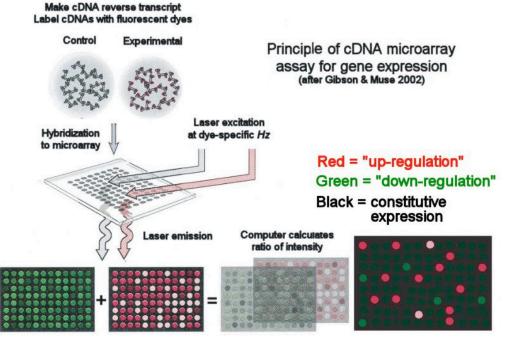
 Consider, through discussion, an increasingly important application area for aptamer technology

 Provide an overview of antibodies as affinity reagents to provide you with a context for deciding on using one over the other

- As team leader at AptUs[™] Biotechnologies (48-52 Mass Ave in Cambridge), you would like to develop a rapid and sensitive method for simultaneously detecting 50 proteins. These proteins have homologies ranging from 30-60% (i.e. they are highly similar to each other).
- The relative abundance of these proteins in human serum samples is correlated with diabetes risk.
- You are highly motivated to use your team's primary expertise to generate aptamers that can unambiguously distinguish these proteins.
- New Guy asks about using antibodies to tackle this problem.
 After the massive group laughter subsides, you promise to discuss this later.

- What are some key SELEX-related issues you'll need to address?
- What are your strategies for addressing these issues?
- How will you integrate your aptamers into a detection device?
 - What will be your readout?
 - How will you calibrate your system?
 - Keep in mind that you will likely want to analyze hundreds of samples simultaneously.

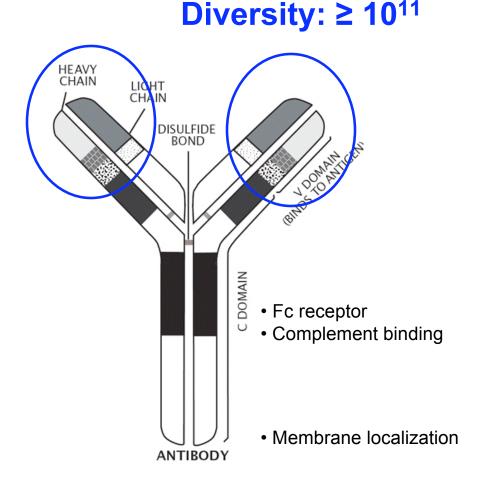
- What are some key SELEX-related issues to address?
 - Large number of proteins and selection optimization space to consider
 - High degree of similarity between the various targets => potential for cross-reactivity is high
 - Obtaining pure target proteins (all 50?!)

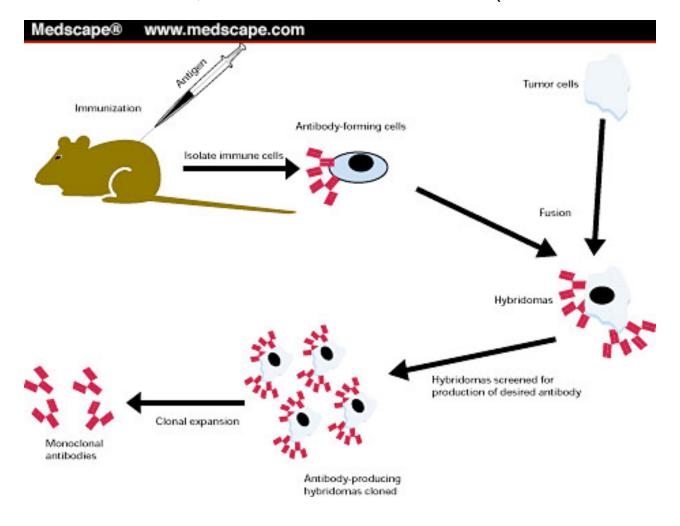

- What is your strategy for addressing these issues?
 - Large number of proteins and selection optimization space to consider
 - Automation (options?)
 - High degree of similarity between the various targets => potential for cross-reactivity is high
 - Counter-selection (how might you efficiently do this?)
 - Perform SELEX on the isolated, non-homologous protein regions only
 - Advantages and disadvantages?
 - Obtaining pure target proteins (all 50?!)
 - You'll learn all about this in Module II!

- You've successfully obtained aptamers for 45/50 targets!
 - How do you verify their respective specificities?
 - What cross-reactivities are you concerned about?
 - Between highly related classes of proteins
 - "Non-specific" interactions with other unrelated proteins
 - Especially high abundance proteins (e.g. albumin)

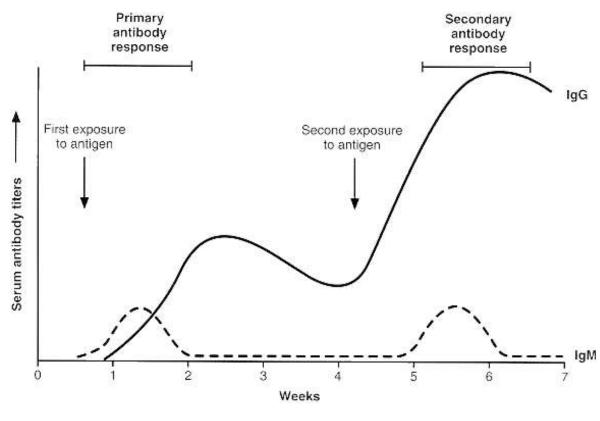
- You now start thinking about how you'll use these aptamers to test the levels of these various proteins in blood samples.
 - What test format do you choose?
 - Solution phase
 - Immobilized (which component do you immobilize?)
 - How do you detect a binding reaction?
 - You expect to be doing high volume testing. Which formats are most compatible with having to run tests for 100 samples/day?

Microarray format


- Immobilized aptamer reagent
- Expose to fluorescently labeled sample
- Washing step to remove unbound material
- Image to quantify sample amount bound
- Same format as "gene chips" used to profile RNA



Antibodies: General


- Antibodies are proteins
 - Produced by B cells
 - Each B cell produces one type of antibody
- Overall structure
 - 2 heavy chains
 - 2 light chains
 - Both intra- and inter- chain disulfide bonds important for maintaining structure and function
- Functional Regions
 - Variable
 - Antigen binding
 - Both heavy & light chains contribute to binding site
 - Constant regions

- How are antibodies produced?
 - Immunize an animal (e.g. mouse, goat, rabbit)
 - Several months later, antibodies can be isolated (if immunization successful)

- How are antibodies produced?
 - Immunize an animal (e.g. mouse, goat, rabbit)
 - Several months later, antibodies can be isolated (if immunization successful)

Typical time course for antibody production after immunization

- Are there any similarities between antibody and aptamer selections?
 - An animal makes large, randomized antibody pools (B cell clones)
 - Antibodies to the target antigen are selected from this pool
- Do you expect an antibody to every possible target will be present in an animal's antibody repertoire?
 - Consider representation within space considerations
 - Any other factors?
 - Yes--Antibodies that interact strongly with self-proteins are stringently selected against.
 - The B-cell clones capable of making these antibodies are eliminated from an animal's antibody repertoire

- What are some advantages to using or working with antibodies for binding reactions?
 - Lots of existing expertise!
 - Stability
 - Nature has optimized the selection process
 - Robustness of antibody production process
 - Potentially higher success rate of identifying an antibody
 - Selection stringency high ==> skewed towards identifying high affinity antibodies
 - Selection occurs (unattended) in immunized animal

- What are some disadvantages to using or working with antibodies for binding reactions?
 - Limited to targets that are not toxic to the animal!
 - Cannot easily tune the selection stringency
 - No guarantee that antibody will function in non-physiological conditions
 - Limited antibody reuse
 - Requires using animals (costly to house)
 - Batch-to-batch variability can be high

Aptamers versus antibodies

- Limited to targets that are not toxic to the animal!
- Aptamers to toxic substances can be developed
- Cannot easily tune the selection stringency
- Stringency easily tuned
- No guarantee that antibody will function in non-physiological conditions
- Aptamers can be selected under conditions in which they will be used
- Limited antibody reuse
- Aptamers can be refolded and reused
- Requires using animals (costly to house)
- No live animals required
- Batch-to-batch variability can be high
- Chemically well-defined aptamers can be reproducibly synthesized

Summary

- Aptamers are a viable strategy for binding and distinguishing closely related protein family members
- For multi-target, high throughput protein identification studies, there is a need to:
 - Increase the throughput for producing aptamers to distinct targets
 - Use aptamers in a format compatible with processing many samples in parallel
- Antibodies are the gold standard affinity reagents in biology/biotechnology
 - Many desirable characteristics
 - Aptamers can rival antibodies
 - Must carefully consider your applications to decide which affinity agent is more suitable