

L4 – Quantitative Evaluation of Binding Interactions

November 21, 2019

Molecular recognition is ubiquitous in biology

proteins, lipids, sugars, nucleic acids, metabolites, antibodies

The Inner Life of the Cell – Alain Viel, Harvard

https://www.youtube.com/watch?v=FzcTgrxMzZk

8 minute video – watch it while you are running an experiment

Basic language of binding interactions

Affinity: strength of the interaction, measured by the corresponding decrease in free energy upon binding

Specificity: relative strength of interaction for a 'cognate' and 'non-cognate' receptor-ligand complex

There are two basic types of non-covalent interactions: simple binding and allosteric

Some binding interactions are 'simple' equilibria – each encounter is independent

There are two basic types of non-covalent interactions: simple binding and allosteric

Some binding interactions are 'simple' equilibria – each encounter is independent

Others are more complex, involving allostery, where one ligand binding event alters the affinity for another ligand

Adapted from Kuriyan, The Molecules of Life, Chapter 12, Molecular Recognition

Thermodynamics provide insight into molecular interactions

As you learned in 20.110, we can think about the following binding-related terms thermodynamically:

- affinity and specificity
- contribution of entropy and enthalpy
- dependence on temperature
- contributions of chemical groups on the ligand and/or the receptor

This information can in turn be used to understand a system and to alter the system (e.g. drug design)

Relationship of ligand binding free energy to association constants

Relationship of ligand binding free energy to association constants

Binding isotherms are half maximal at $[L] = K_D$

Logarithmic vs. Linear display of data

as a corollary, choose your concentrations wisely:

1, 3, 10, 30, 100, 300 nM

VS.

50, 100, 150, 200, 250, 300 nM

Range of biologically important interactions

Type of Interaction	K _D (molar)	$\Delta G^0_{bind}~({ m at}~300{ m K})$ kcal/mol
Enzyme:ATP	~1×10 ⁻³ to ~1×10 ⁻⁶ (millimolar to micromolar)	-4 to -8 kcal/mol
signaling protein binding to a target	~1×10 ⁻⁶ (micromolar)	-8 kcal/mol
Sequence-specific recognition of DNA by a transcription factor	~1×10 ⁻⁹ (nanomolar)	-12 kcal/mol
small molecule inhibitors of proteins (drugs)	~1×10 ⁻⁹ to ~1×10 ⁻¹² (nanomolar to picomolar)	-12 to -17 kcal/mol
biotin binding to avidin protein (strongest known non-covalent interaction)	~1×10 ⁻¹⁵ (femtomolar)	-21 kcal/mol

higher K_D value weaker interaction

lower K_D value stronger interaction

Specificity in molecular recognition

discrimination among targets

Proteinase K

low specificity

Aliphatic/X Aromatic/X Tobacco Etch Virus (TEV) protease

high specificity

Glu-X-X-Tyr-X-Gln/Ser

Specificity in molecular recognition – kinase drugs

Adapted from Zarrinkar et al, Blood (2009), 114: 2984-2992

Specificity in drug binding – fractional saturation

deliver the drug at a concentration below the K_D for non-cognate target

Adapted from Kuriyan, The Molecules of Life, Chapter 12, Molecular Recognition

Specificity in drug binding – fractional saturation

deliver the drug at a concentration below the TD₅₀ in patients

 ED_{50} = effective in 50% patients TD₅₀ = toxic in 50% patients But how do we go about measuring these K_D values in a laboratory setting?

Methods to evaluate binding interactions

Relative information content

Methods to evaluate binding interactions

Relative information content

20.109 path to evaluate FKBP12 ligands

in silico cloning; overexpress FKBP12

purify and analyze FKBP12

re-analyze screen data

test FKBP12 and ligands in enzyme activity assay

test ligands in FKBP12 binding assay complete data analysis prioritize best ligands

Measuring a thermal melt profile for a protein

ANS 8-anilinonapthalene-1-sulfonic acid (1965)

ANS 8-anilinonapthalene-1-sulfonic acid (1965)

9-diethylamino-5-benzo[a]phenoxazinone (1985) solvatochromic Nile Red under visible and UV light in different solvents

ANS 8-anilinonapthalene-1-sulfonic acid (1965)

9-diethylamino-5-benzo[a]phenoxazinone (1985)

Nile Red

solvatochromic Nile Red under visible and UV light in different solvents

SYPRO® Orange Most common dye for DSF/TS (2004)

binds nonspecifically to hydrophobic surfaces; water quenches fluorescence

ANS 8-anilinonapthalene-1-sulfonic acid (1965)

Nile Red 9-diethylamino-5-benzo[a]phenoxazinone (1985) solvatochromic Nile Red under visible and UV light in different solvents

SYPRO® Orange

Most common dye for DSF/TS (2004)

binds nonspecifically to hydrophobic surfaces; water quenches fluorescence

N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (2008)

only fluoresces after reacting with Cys residues

What happens when you add a small molecule?

Thermal shift assays with small molecules

Real thermal shift screens with small molecules

preferential ligand binding to unfolded states?

Real results from thermal shift studies assay development

consider optimizing buffer conditions – pH, cofactors

Real results with thermal shift assays

three replicates for a single experiment

raw fluorescence thermal curves

first derivative representation

Adapted from Collaborative Crystallisation Centre

Real results with thermal shift assays

raw fluorescence thermal curves

Protein disorder continuum

Protein disorder continuum

Determining apparent dissociation constants

hexokinase (receptor) and glucose (ligand)

Experiment 1:

test a wide range of glucose concentrations

K_D is likely between 0.2 and 1.7 mM

Determining apparent dissociation constants

hexokinase (receptor) and glucose (ligand)

Experiment 1:

Experiment 2:

test a wide range of glucose concentrations

 K_D is likely between 0.2 and 1.7 mM

test 16 concentration of glucose fit to single binding event model (red)

apparent $K_D \sim 1.12 + /-0.05 \text{ mM}$

Determining apparent dissociation constants

Step-by-step protocols with more examples

jove Journal of Visualized Experiments

www.jove.com

Video Artichttp://www.jove.com Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry

Mirella Vivoli¹, Halina R. Novak¹, Jennifer A. Littlechild¹, Nicholas J. Harmer¹

¹Department of Biosciences, University of Exeter

Correspondence to: Nicholas J. Harmer at N.J.Harmer@exeter.ac.uk

URL: http://www.jove.com/video/51809 DOI: doi:10.3791/51809

Keywords: Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.

Date Published: 9/13/2014

Citation: Vivoli, M., Novak, H.R., Littlechild, J.A., Harmer, N.J. Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry. J. Vis. Exp. (91), e51809, doi:10.3791/51809 (2014).

Target engagement in cells: cellular thermal shift assays (CETSA)

Anticipated results from CETSA assays

IsoThermal Dose Response Fingerprint 'apparent potencies' at single temp

Real results from CETSA assays

thymidylate synthase drugs in K562 cells

quadruplicate data from one independent experiment

General considerations for CETSA design

CETSA for high-throughput screening

Adapted from the NIH Assay Guidance Manual

Small molecule stabilizers to aid crystallization improving structural biology efforts

Small molecule stabilizers to aid crystallization improving structural biology efforts

Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination

Masoud Vedadi*, Frank H. Niesen[†], Abdellah Allali-Hassani*, Oleg Y. Fedorov[†], Patrick J. Finerty, Jr.*, Gregory A. Wasney*, Ron Yeung*, Cheryl Arrowsmith*, Linda J. Ball[†], Helena Berglund[‡], Raymond Hui*, Brian D. Marsden[†], Pär Nordlund[‡], Michael Sundstrom[†], Johan Weigelt[‡], and Aled M. Edwards^{*§}

*Structural Genomics Consortium, University of Toronto, 100 College Street, Toronto, ON, Canada M5G 1L5; †Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom; and [‡]Structural Genomics Consortium, Karolinska Institutet, KI Scheeles vaeg 2 A1:410, 17177 Stockholm, Sweden

PNAS

X-ray crystallography