M3D1:Growth of phage materials

04/14/16

- 1. Purify M13 bacteriophage (phage)
- 2. Prelab during 60min incubation
- 3. Finish M13 purification and measure concentration of M13 phage
- 4. Incubate phage with gold nanoparticles (AuNP)

• Extra office hours this week:

- Friday 04/15: 9am-11am 16-239; 3pm-4pm in 16-429b
- Saturday 04/16: 3pm-5pm 56-302
- Sunday 04/17: 10am-12pm; 2pm-5pm in 56-302
- System engineering research article (25%):
 due at 5pm on Monday, April 18th
- Blog posts: (1) post-Journal Club
 (2) post- Mod 2 research article, April 19th 5pm

• M3 major assignments

- Research proposal oral presentation (20%)
- Mini-report (5%)

Topics for M3 Comm Lab meeting assignment (questions to discuss with the Fellows):

Prior to M3D2: How do I identify where to start?

Prior to M3D3: How do I identify what the knowledge gaps are currently in the field?

Prior to M3D4: How do I identify the holes in my plan?

**By D4 you should be working toward fine-tuning your research proposal.

Prior to M3D5, Have prepared answers for and ask for feedback:

Will my research plan (methods) answer my research question?

What are the expected results?

What if I do not get the expected results?

What will I learn if I get expected results?

What will I learn if I get unexpected results?

Prior to Presentation Day, Have slides prepared and ask for feedback:

Do my slides convey my message clearly and appropriately?

Does my script convey my message clearly and appropriately?

We are in the homestretch...

3	1	R/F Apr 14/15	AB &	Growth of phage materials	Homework due
		T/W Apr 19/20		Patriots' day holiday	System engineering research article due Mon, Apr 18 at 5 pm
3	2	R/F Apr 21/22	AB &	Phage nanowires	Homework due
	3	T/W Apr 26/27	AB ₽	Cathode construction	Lab quiz Homework due
	A	R/F Apr 28/29	AB &	Lecture, but no laboratory	
3	4	T/W May 3/4	AB &	TEM	Homework due
3	5	R/F May 5/6	AB &	Battery assembly and testing	Lab quiz Homework due Biomaterials engineering mini-report due Thu/Fri, May 5/6 at 10 pm
3	6	T/W May 10/11		Research proposal presentations	Research proposal presentation slides due Tue/Wed, May 10/11 at 1pm
		R May 12		Feedback and celebratory lunch	

Thurs 28th elevator pitch of research Pruposal

Module 3: biomaterials engineering

capacity (mAh/g)

How does gold size/quantity affect battery capacity?

3.6nm 3 phage per AuNP option Visualize Purify **Biomineralize** nanowires M13 phage Fe(III)-

Phage essentially: proteins for packaging, protein for replication and ssDNA

M13 phage life cycle

Nonlytic phage needs a way to get out!

start with a pool of 1 billion peptides isolating 10-1000 candidate sequences

Overview of phage display

P3: 5 copies, 20- 30 amino acids P8: 2700 copies, 4-6 amino acids

irrational design, directed evolution

Examples of biomineralization from nature:

Engineering biomineralization using M13 phage:

Environmental conditions
 4*C, buffer, H2O

Structural organization

align gold and iron along their 900nm length

 M13 provides scaffold for Li(FePO₄) cathode construction application

M13 nanowires as battery cathode

Image: George Sun

Today in lab...

- Finish phage purification
- Calculate phage number
- Begin construction of phage-AuNP-FePO4 nanowires

ACCOUNT FOR DILUTION!

measure

phage/ml= (6×10^{16}) (A269 - A320)

bases in phage genome

7220bps