The antigenantibody interaction #### It takes a Herd! - There is no single policy that will be fully ethical or make everyone happy - The goal is to be mindful and take different perspectives into account - With more time to think, does anyone have anything they want to share? Thank you for your thoughtful participation! ## The Antigen - Antibody interaction forms multiple contacts 3D: Lysozyme bound to variable region - Green: lysozyme - Blue/Yellow: V₁ and V₁ - Red amino acids that interact - Pink critical glutamine reside fits into cleft of CDR - Antigen-Antibody bind via many non-covalent bonds - High affinity antibodies evolve to fit the antigen and therefore have complementarity - Even single amino acid residues in the interacting surfaces between the antigen-antibody (or binding pocket) can be critical for the strength of the interaction #### Influenza antigen and antibody binding illustrates complementary when separated by 8 Å #### Large variation in antibody binding pockets due to the structural variability of the V_H and V_L domains # Complementarity Determining Regions (CDRs) generate antigen binding site specificity - Specificity, degree to which an antibody differentiates between different antigens - Finger-like CDRs usually recognize 15-22 amino acids - Basic antibody structure maintained (β strands) when variability confined to CDR loops # Noncovalent bonds form the basis of the antibody binding site - Strength of each of these noncovalent interactions is weak - Many noncovalent bonds are required to form a strong interaction - Each of these interactions operates over a very small distance (~1 Å) - This requires a high degree of complementarity between the CDR of the antibody and the antigen #### Mod1: Characterization of scFvs that bind lysozyme - The goal of this screen is to find a scFv clone with stronger binding to lysozyme - Antibody with a lower K_d for its antigen means a more stable interaction and a higher affinity (stronger) - We sorted a library of scFv yeast that bind to lysozyme - Today will determine the DNA sequence of those mutants and later measure binding strength #### Mispaired bases during PCR amplification steps results in changes to the DNA sequence and protein sequence Parental Sequence: No mutations Mutant DNA sequence, mutant protein sequence Mutant DNA sequence, silent mutation in protein sequence | | | U | С | Α | G | | |--------------|---|-------------------------------|--------------------------|-------------------------------------|----------------------------------|---------| | | U | UUU } Phe UUC } Leu UUG } Leu | UCU
UCC
UCA
UCG | UAU Tyr UAC Stop UAG Stop | UGU Cys
UGC Stop
UGA Trp | UCAG | | | С | CUU CUC Leu | CCU
CCC
CCA
CCG | CAU His
CAC His
CAA GIn | CGU
CGC
CGA
CGG | UCAG | | | Α | AUU Ile AUA Met | ACU
ACC
ACA
ACG | AAU } Asn
AAC } Lys
AAG } Lys | AGU }Ser
AGC }Arg
AGA }Arg | U C A G | | 0.55
0.55 | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU } Asp
GAC } Glu
GAG } Glu | GGU
GGC
GGA
GGG | UCAG | Third letter #### Effects of amino acid mutations on hydrogen bonding within the binding pocket of anti-lysozyme antibody Arginine to lysine is a conservative mutation $$H_2N$$ H_2 H_3 H_4 H_5 H_5 H_5 H_6 H_6 H_6 H_6 H_7 H_8 H_8 H_8 - A conservative replacement is an amino acid replacement in a protein that changes a given amino acid to a different amino acid with similar biochemical properties. - The opposite is **radical replacement**, is an amino acid replacement that exchanges an initial amino acid by a final amino acid with different physicochemical properties. # Effects of amino acid mutations on anti-lysozyme antibody structure of a V_H CDR folding • Left: Histidine 27 to Phenylalanine or Serine $$N \longrightarrow NH_2$$ OH NH_2 OH NH_2 - Changes in amino acid sequence can also affect the folding or structure of several amino acids in a peptide chain - Mut1 and Mut2 create a pocket like structure instead of an exposed charge ## Antibody K_d (dissociation constant) is equated strength of the interaction - Dissociation constant= K_d - Lower K_d= stronger interaction | TABLE 6-1 | Forward and reverse rate constants $(k_1 \text{ and } k_{-1})$ and association and dissociation constants $(K_a \text{ and } K_d)$ for three ligand-antibody interactions | | | | | | | | | |---------------------------------|---|----------------|-----------------|--------------------|--------------------|------------------------|--|--|--| | Antibody | | Ligand | k ₁ | k_1 | K _a | $K_{\mathbf{d}}$ | | | | | Anti-DNP | | €-DNP-L-lysine | 8×10^7 | 1 | 1×10^8 | 1×10^{-8} | | | | | Anti-fluorescein | | Fluorescein | 4×10^8 | 5×10^{-3} | 1×10^{11} | 1×10^{-11} | | | | | Anti-bovine serum albumin (BSA) | | Dansyl-BSA | 3×10^5 | 2×10^{-3} | 1.7×10^8 | 5.9 × 10 ⁻⁹ | | | | ## Binding a monovalent antigen by an antibody can be described by a bimolecular equation Antigen + Antibody $$\xrightarrow{k_1}$$ Antigen-Antibody $$K_1$$ =rate of association K_{-1} =rate of disassociation $$A + B \xrightarrow{K_1} AB$$ # The equilibrium <u>association</u> constant (K_a) is a good indicator for antibody affinity $$A + B \xrightarrow{k_1} AB$$ $$K_a = [AB]$$ $$A = [A][B]$$ - Ratio of products to reactants - Affinity, the strength of the total noncovalent interactions between one antigen and antibody - Units of K_a are concentration⁻¹ - Example: nM⁻¹ ## Equilibrium <u>dissociation</u> constant (K_d) is an indicator of the stability of a complex $$A + B \xrightarrow{k_1} AB$$ $$K_d = [A][B]$$ $$AB$$ - Ratio of reactants to products - Antibodies produced in a typical immune response usually varied from $K_d = 10^{-7}$ (~100nM) to 10^{-9} (~1nM) - Units of K_d are concentration - The smaller the K_d the more stable the interaction ## Practically how will we measure the strength of our lysozyme and scFv interaction Biomolecular binding interaction at equilibrium: Why is antibody dissociation constant (K_d) equal to the antigen concentration at which 50% antibody is bound to antigen? Lysozyme A + B = AB lysozyme-schv Sch equilibrium_ [AJ[B] Kd [AB] Reactants over products - Kat = [A] Kat | TA] Kat | TA] Lets plug in some numbers fraction $B = \frac{[A]}{[A]}$; So when $\frac{1}{[A]} = \frac{1}{[A]}$; bound $\frac{1}{[A]} = \frac{1}{[A]}$ 80... So when $k_0 = [A]$ fraction B = 1bound Z Experimentally find 50%. bound antibody, then antigen concentration used for this andition = Kd #### Mathematical relationship between fraction bound and free reactant makes estimations easy $$L+Ab ightleftharpoons \ ^{k_f}_{k_r}C$$ $$y = \frac{[L]}{[L] + K_d}$$ • at $$L = K_d$$ y $$y = 0.5$$ • if $L << K_d$ then $y \approx \frac{[L]}{K_d}$ (linear relationship) o.5 wer • if $L >> K_d$ then $y \approx 1$ (at saturation) #### Today in lab, M1D5: Analyze clone sequences #### THE CENTRAL DOGMA