

The antigenantibody interaction

It takes a Herd!

- There is no single policy that will be fully ethical or make everyone happy
- The goal is to be mindful and take different perspectives into account
- With more time to think, does anyone have anything they want to share?

Thank you for your thoughtful participation!

The Antigen - Antibody interaction forms multiple contacts

3D: Lysozyme bound to variable region

- Green: lysozyme
- Blue/Yellow: V₁ and V₁
- Red amino acids that interact
- Pink critical glutamine reside fits into cleft of CDR

- Antigen-Antibody bind via many non-covalent bonds
- High affinity antibodies evolve to fit the antigen and therefore have complementarity
- Even single amino acid residues in the interacting surfaces between the antigen-antibody (or binding pocket) can be critical for the strength of the interaction

Influenza antigen and antibody binding illustrates complementary when separated by 8 Å

Large variation in antibody binding pockets due to the structural variability of the V_H and V_L domains

Complementarity Determining Regions (CDRs) generate antigen binding site specificity

- Specificity, degree to which an antibody differentiates between different antigens
- Finger-like CDRs usually recognize 15-22 amino acids
- Basic antibody structure maintained (β strands) when variability confined to CDR loops

Noncovalent bonds form the basis of the antibody binding site

- Strength of each of these noncovalent interactions is weak
 - Many noncovalent bonds are required to form a strong interaction
- Each of these interactions operates over a very small distance (~1 Å)
- This requires a high degree of complementarity between the CDR of the antibody and the antigen

Mod1: Characterization of scFvs that bind lysozyme

- The goal of this screen is to find a scFv clone with stronger binding to lysozyme
- Antibody with a lower K_d for its antigen means a more stable interaction and a higher affinity (stronger)
- We sorted a library of scFv yeast that bind to lysozyme
- Today will determine the DNA sequence of those mutants and later measure binding strength

Mispaired bases during PCR amplification steps results in changes to the DNA sequence and protein sequence

Parental Sequence: No mutations

Mutant DNA sequence, mutant protein sequence

Mutant DNA sequence, silent mutation in protein sequence

		U	С	Α	G	
	U	UUU } Phe UUC } Leu UUG } Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGA Trp	UCAG
	С	CUU CUC Leu	CCU CCC CCA CCG	CAU His CAC His CAA GIn	CGU CGC CGA CGG	UCAG
	Α	AUU Ile AUA Met	ACU ACC ACA ACG	AAU } Asn AAC } Lys AAG } Lys	AGU }Ser AGC }Arg AGA }Arg	U C A G
0.55 0.55	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU } Asp GAC } Glu GAG } Glu	GGU GGC GGA GGG	UCAG

Third letter

Effects of amino acid mutations on hydrogen bonding within the binding pocket of anti-lysozyme antibody

Arginine to lysine is a conservative mutation

$$H_2N$$
 H_2
 H_3
 H_4
 H_5
 H_5
 H_5
 H_6
 H_6
 H_6
 H_6
 H_7
 H_8
 H_8
 H_8

- A conservative replacement is an amino acid replacement in a protein that changes a given amino acid to a different amino acid with similar biochemical properties.
- The opposite is **radical replacement**, is an amino acid replacement that exchanges an initial amino acid by a final amino acid with different physicochemical properties.

Effects of amino acid mutations on anti-lysozyme antibody structure of a V_H CDR folding

• Left: Histidine 27 to Phenylalanine or Serine

$$N \longrightarrow NH_2$$
 OH NH_2 OH NH_2

- Changes in amino acid sequence can also affect the folding or structure of several amino acids in a peptide chain
- Mut1 and Mut2 create a pocket like structure instead of an exposed charge

Antibody K_d (dissociation constant) is equated strength of the interaction

- Dissociation constant= K_d
- Lower K_d= stronger interaction

TABLE 6-1	Forward and reverse rate constants $(k_1 \text{ and } k_{-1})$ and association and dissociation constants $(K_a \text{ and } K_d)$ for three ligand-antibody interactions								
Antibody		Ligand	k ₁	k_1	K _a	$K_{\mathbf{d}}$			
Anti-DNP		€-DNP-L-lysine	8×10^7	1	1×10^8	1×10^{-8}			
Anti-fluorescein		Fluorescein	4×10^8	5×10^{-3}	1×10^{11}	1×10^{-11}			
Anti-bovine serum albumin (BSA)		Dansyl-BSA	3×10^5	2×10^{-3}	1.7×10^8	5.9 × 10 ⁻⁹			

Binding a monovalent antigen by an antibody can be described by a bimolecular equation

Antigen + Antibody
$$\xrightarrow{k_1}$$
 Antigen-Antibody

$$K_1$$
=rate of association K_{-1} =rate of disassociation

$$A + B \xrightarrow{K_1} AB$$

The equilibrium <u>association</u> constant (K_a) is a good indicator for antibody affinity

$$A + B \xrightarrow{k_1} AB$$

$$K_a = [AB]$$

$$A = [A][B]$$

- Ratio of products to reactants
- Affinity, the strength of the total noncovalent interactions between one antigen and antibody
- Units of K_a are concentration⁻¹
- Example: nM⁻¹

Equilibrium <u>dissociation</u> constant (K_d) is an indicator of the stability of a complex

$$A + B \xrightarrow{k_1} AB$$

$$K_d = [A][B]$$

$$AB$$

- Ratio of reactants to products
- Antibodies produced in a typical immune response usually varied from $K_d = 10^{-7}$ (~100nM) to 10^{-9} (~1nM)
- Units of K_d are concentration
- The smaller the K_d the more stable the interaction

Practically how will we measure the strength of our lysozyme and scFv interaction

Biomolecular binding interaction at equilibrium: Why is antibody dissociation constant (K_d) equal to the antigen concentration at which 50% antibody is bound to antigen?

Lysozyme

A + B = AB lysozyme-schv

Sch

equilibrium_ [AJ[B] Kd [AB] Reactants over products

- Kat = [A]

Kat | TA]

Kat | TA]

Lets plug in some numbers

fraction $B = \frac{[A]}{[A]}$; So when $\frac{1}{[A]} = \frac{1}{[A]}$; bound $\frac{1}{[A]} = \frac{1}{[A]}$

80...

So when $k_0 = [A]$ fraction B = 1bound Z

Experimentally find 50%. bound antibody, then antigen concentration used for this andition = Kd

Mathematical relationship between fraction bound and free reactant makes estimations easy

$$L+Ab
ightleftharpoons \ ^{k_f}_{k_r}C$$

$$y = \frac{[L]}{[L] + K_d}$$

• at
$$L = K_d$$
 y

$$y = 0.5$$

• if $L << K_d$ then $y \approx \frac{[L]}{K_d}$ (linear relationship) o.5 wer

• if $L >> K_d$ then $y \approx 1$ (at saturation)

Today in lab, M1D5: Analyze clone sequences

THE CENTRAL DOGMA

