Welcome to 20.109

Laboratory Fundamentals of Biological Engineering

Orientation Lecture
Spring 2009

Introducing 20.109

- Why you're here
 - course mission
 - principles of investigation

- What you'll do
 - three experimental modules
 - assessments/communication
 - course logistics

Course Mission for 20.109

- To teach cutting edge research skill and technology through authentic investigation
- ➤ To inspire rigorous data analysis and its thoughtful communication
- To prepare students to be the future of Biological Engineering

Olivia's experiment: an 8th-grader poses a question

- Effect of R&B vs. classical (CL) music on heart-rate
- Other hypotheses 20 ppossile effect

no change (null) H2 assume tempo iskey parameter

experiences -> definitions / biases

Olivia's experiment: controls and interpretation of data

- Experimental design: > hterm (ontrol
 - Measure heart-rate before and after exposure
 - How many groups? (1) pre > R&B > CL 2) A) R&B B)CL } workled (xx, age ...)

3rd group-external control: "nock" 2 min. w/ hondphones

- What if heart-rate is unchanged in all 3 cases?

 (γείρες βλίνς)

Olivia's experiment: quantification

Which data suggest a real difference? How can we know?

• Ways to process the raw data:

> yamalpation

Olivia's experiment: community

What if her classmate got very different results?

Olivia's experiment: what does all this have to do with 20.109?

- Posing a good question:
 - Consider interest and impact
 - Recognize your assumptions
 - Seek out prior knowledge
- Interpretation of data:
 - Develop good controls
 - Understand each collection step
 - Perform quantitative analysis
 - Peer review

Course Mission for 20.109

- To teach cutting edge research skill and technology through authentic investigation
- ➤ To inspire rigorous data analysis and its thoughtful communication
- To prepare students to be the future of Biological Engineering

Engineering Principles + Modern Biology Manipulate and Make Measure ← Model

Nagai et al.

Myriad length scales, systems, and applications

openwetware.org/wiki/20.109(S09)

Module 1 Protein Engineering (A. Jasanoff)

Module 2 Expression Engineering (L. Samson)

Module 3 Cell-Biomaterial Engineering (A. Stachowiak)

Protein Engineering: calcium sensor redesign

Design: Modify DNA + protein

- Mutagenize wild-type plasmid
- Express and purify protein
- Assess effect on protein

Lab+Analytical Skills

- Bacterial cell culture
- DNA manipulation and analysis
- Protein characterization
- MATLAB modeling
- Discuss primary research article

Expression Engineering: siRNA knockdown

Experimental Goals

Design: siRNA, comparison

- Transfect cells with DNA + siRNA
- Measure gene knockdown
- Assess genome-wide changes

Lab+Analytical Skills

- Mammalian cell culture
- Reporter plasmids
- Large data sets, statistics
- Intended and unintended effects
- Present primary research article

Cell-Biomaterial Engineering: making cartilage

Experimental Goals

Design: Culture conditions

 Study how environment affects cell health, and expression + production of tissue-specific proteins

Lab+Analytical Skills

- 3D cell culture
- Fluorescence microscopy
- Measure specific mRNAs
- Identify protein from mixture
- Present a novel research idea

Scientific writing must tell a story

- Archimedes, Newton, Kekulé
 - Stories help us remember

- Then convince an audience of your findings
 - Step-by-step explanations
 - Repetition of central ideas
 - Clear visuals

Your data should be true even if your story is wrong

~ Darcy Kelley, Columbia (from The Canon, N. Angier)

Communication and Grading

50% Written Work

Module 1: research article

Module 2: condensed report, submission letter

Module 3: data summary

30% Oral Presentations Module 2: published article

Module 3: original proposal

20% Daily(ish) work

9% Homework 5% Quizzes

4% Lab Notebooks 2% Participation

Writing & Oral Communication Faculty

- Neal Lerner
 - Lectures/discussions
 - Written feedback (→ opportunity to revise)
- Atissa Banuazizi
 - Lectures/discussions
 - One-on-one review of videotaped talk

After 20.109, you should be able to...

- Organize a lab notebook
- Implement laboratory protocols
- Design novel experiments with appropriate controls
- Interpret qualitative data
- Analyze quantitative data
- Recognize utility of models
- Examine the scientific literature
- Communicate in multiple modes

Course Logistics

Lecture Tuesdays and Thursdays 11-12, 4-237

Lab Tuesdays and Thursdays 1-5, 56-322

Wednesdays and Fridays 1-5, 56-322

There are no "make-up" labs

Collaboration with integrity is encouraged: assignments can be worked on together but must be submitted individually. You will perform experiments in pairs.