
Soil is a non-renewable resource, generated at a rate of 
a few centimetres per thousand years1. It plays a crit-
ical role in supporting ecosystems and human society 
through providing a habitat for the majority of Earth’s 
species and serving as a medium for crop production2,3. 
However, anthropogenic activities are causing wide-
spread soil contamination and degradation4,5. A 2018 
study predicted the presence of 2.8 million sites in the 
EU potentially contaminated with soil pollution6, and, 
in China, 19% of agricultural soils contain harmful 
pollutants at levels exceeding environmental quality 
standards7.

The United Nations has set 17 Sustainable Develop-
ment Goals to be reached by 2030, and eight of these 
goals rely on a healthy soil environment (Fig. 1). Soil and 
permafrost together hold the largest terrestrial pool of 
carbon, storing an estimated 4.1 trillion tonnes — nearly 
five times the estimated mass of atmospheric carbon8. 
Contaminated soil might not be able to fulfil its role  
in the carbon cycle, thus, aggravating climate change. 
The degradation of agricultural soil and the resultant 
loss of crop yield are particularly alarming, as they put 
the most vulnerable people on the planet at greater risk 
of poverty and malnutrition9. Moreover, soil pollutants 

can cause seriously impaired neurological development 
and life-threatening cancers10,11 after entering the human 
body through ingestion of contaminated crops, inhala-
tion of contaminated soil dust or inadvertent ingestion 
of contaminated soil.

Heavy metals and metalloids, henceforth, referred 
to as heavy metal(loid)s, are important agricul-
tural soil pollutants due to their toxicity, ubiquity, 
non-biodegradability and bioavailability for crop uptake, 
and are a major threat to global food safety and food 
security12. Global agricultural production must double 
by 2050 to meet the projected demand of a growing 
population with improved living standards13; however, 
the industrialization of developing countries is caus-
ing widespread heavy metal(loid) pollution of agricul-
tural land. The most commonly encountered heavy 
metal(loid)s in soil include cadmium, arsenic, copper, 
mercury, lead and chromium; a 2014 national soil sur-
vey in China showed that these respectively accounted 
for 43%, 17%, 13%, 10%, 9% and 7% of all soil qual-
ity exceedances14. Cadmium is the most widespread 
and bioavailable heavy metal(loid) in rice paddy soils, 
leading to concerns that the rice produced is cadmium 
contaminated15. Millions of hectares of agricultural land 
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are now being taken out of production due to cadmium 
pollution15,16, and, despite the increasing stringency of 
environmental protection regulations, cadmium pollution 
continues to accumulate16.

The growing issue of soil pollution has caught the 
attention of national and international bodies, both 
governmental and non-governmental17. In 2013, the 
68th session of the United Nations General Assembly 
declared December 5th to be ‘World Soil Day’ and 2015 
as the ‘International Year of Soils’. In 2017, the United 
Nations Environment Assembly (UNEA) adopted a 
resolution that requested a number of bodies to report 
on global soil pollution18. These bodies, including the 
World Health Organization (WHO) and the Food and 
Agriculture Organization (FAO), are required to assess 
the extent of the problem, monitor future trends and 
identify associated risks and impacts by 2021 (reFs18,19). 
Individual countries are also taking action; China, for 
example, revealed an ambitious action plan in 2016 to 
clean up approximately 700,000 hectares of seriously con-
taminated agricultural land by 2020 and make 95% of the 
nation’s contaminated land safe for use by 2030 (reF.15).

In this Review, we discuss the latest findings on the 
sources of agricultural soil pollution and the natural 
and anthropogenic processes that influence the distri-
bution of soil heavy metal(loid)s, ranging from local 
surface runoff to atmospheric transport and deposition. 
We illustrate how soil heavy metal(loid)s undergo bio-
geochemical transformation and bioaccumulation in 

the food chain. Lastly, we review the mechanisms and 
applicability of plant-based and microorganism-based 
remediation strategies (phytoremediation and microbial 
bioremediation) in treating contaminated agricultural 
soils, and conclude by identifying the challenges and 
outlook of implementing bioremediation strategies on 
a large scale.

Occurrence of soil heavy metal(loid)s
Heavy metal(loid)s have been extracted from minerals 
and used by humans for thousands of years20 and, cur-
rently, are used in a wide variety of industrial, domestic 
and agricultural applications; chromium and cadmium 
are frequently used in metal plating, for example. 
Despite increasing awareness of the harm caused by 
heavy metal(loid)s in soils, their essential role in modern 
industry means that their production and use continue 
to increase. Over the past 50 years, global production of 
chromium and lead has increased by 514% to 37.5 Mt 
per year and by 232% to 11.3 Mt per year, respectively21. 
Heavy metal(loid)s are even required for renewable tech-
nologies in some cases22; cadmium and lead, for exam-
ple, are used in lead–acid and nickel–cadmium battery 
cells20,23,24, lead is used in perovskite solar cells and nickel 
is used in electric-car batteries25,26. Because of their inten-
sive manufacturing, widespread usage and tendency to 
accumulate via adsorption, absorption and precipitation, 
heavy metal(loid)s have become the most widely distrib-
uted type of contaminants in agricultural soils27. Their 
occurrence in agricultural soils is associated with a wide 
variety of sources, which are discussed below.

Sources of soil pollution
Anthropogenic sources of heavy metal(loid)s pollu-
tion are associated with agriculture, industry and min-
ing. These sources include surface runoff from mine 
tailings28,29, soil treatment with impure mineral phosphate 
fertilizer30,31 or sewage sludge32 and irrigation of farmland 
with polluted water33,34. Heavy metal(loid)s present in 
dusts and aerosols released during mining and smelting 
activities35, fossil-fuel burning36, vehicle use37, cement 
manufacture38 and electronic-waste processing39 can also 
enter the soil through atmospheric deposition (Fig. 2).

Different types of contamination are often associated 
with different sources. Elevated levels of lead, mercury, 
copper and zinc are often associated with anthropogenic 
sources40, and lead is especially associated with transpor-
tation activity because of the historical usage of lead in 
gasoline and the abrasive wear of lead-containing vehi-
cle components41. Land treatment with impure mineral 
fertilizers and manures is associated with cadmium42,43, 
copper42 and zinc42 contamination in agricultural soil. 
Irrigation with contaminated wastewater also causes 
heavy metal(loid)s accumulation44. For instance, waste-
water land irrigation in a region of Beijing, China 
approximately tripled soil chromium concentrations 
over the past 30 years, and increased lead and cadmium 
levels by factors of 18 and 84, respectively45.

Atmospheric deposition plays a major role in heavy 
metal(loid)s accumulation in agricultural soil42,46. In 
Europe, it was found that atmospheric deposition con-
tributes more lead to soils than fertilizer application43.  

Key points

•	Agricultural soil is a non-renewable natural resource that requires careful stewardship 
in order to achieve the united Nations’ Sustainable Development Goals.

•	Global agricultural soil pollution by heavy metal(loid)s represents one of the biggest 
challenges to sustainable development, particularly in developing countries.

•	Bioremediation, including phytoremediation and microbially mediated bioremediation, 
is a promising nature-based solution for treating heavy metal(loid) contamination.

•	It is imperative that the international community realizes the seriousness of the heavy 
metal(loid)s contamination in soils, takes actions to prevent further pollution and 
instigates the remediation of contaminated sites with environmentally friendly 
techniques.

•	Policymakers should foster a bioremediation-enabling environment through policy 
instruments and increased field-based research funding.
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In England and Wales, atmospheric deposition is the 
main contributor of heavy metal(loid)s in most agricul-
tural areas, accounting annually for 85% of the mercury, 
78% of the lead, 60% of the nickel, 56% of the arsenic 
and 53% of the cadmium deposited in agricultural soils46.

Heavy metal(loid)s in agricultural soils can also 
derive from geogenic sources42,47,48. Most existing stud-
ies suggest that soil parent material contributes to heavy 
metal(loid)s concentrations in agricultural soils. Certain 
heavy metal(loid)s tend to coexist in natural minerals; 
cadmium, for example, is often associated with zinc, lead 
or copper in sulfide forms23. Geogenic heavy metal(loid)s  
levels also correlate with soil properties, including clay 
content, carbonates and soil organic carbon49. The coex-
istence of chromium, cobalt and manganese in soil is 
indicative of soil heavy metal(loid)s being of lithogenic 
origin40. Some regional studies show that chromium con-
tamination originating from soil parent materials can be 
associated with nickel50,51, cadmium52 and arsenic53.

Heavy metal(loid)s distribution
Both geogenic and anthropogenic contaminants can 
accumulate over large spatial areas. Soil pollution in 
large areas of south-western China is mostly attributable 
to geogenic sources, and contamination in large areas of 
China’s eastern developed coastal zone is mostly attrib-
utable to anthropogenic activity, for instance. However, 
differentiating the two remains a significant challenge54. 
Spatial distribution can also occur at a smaller scale, even 
within the same field. The spatial distribution of heavy 
metal(loid)s is dependent not only upon their sources 
but also natural factors that generate heterogeneity in soil 
properties, such as wet–dry cycles and anthropogenic 
processes such as soil tilling40.

Variability in heavy metal(loid)s concentrations 
between fields in the same region can be attributed 
to chemical transformation55,56, transportation57,58, 
dilution59 and accumulation60. Such processes tend to 
operate on larger scales than single agricultural plots, 
reflecting the heterogeneous mineral composition 

among fields and random distribution of exogenous soil 
particles with elevated heavy metal(loid)s contents15,61–63. 
Inter-plot variation can also depend on plot distance 
from pollution sources64,65, with heavy metal(loid)s  
concentrations being highest in plots closest to pollu-
ted sources of irrigation water, such as contaminated 
wastewater conveyance channels or polluted natural 
watercourses45. Vehicular pollutants also cause ele-
vated heavy metal(loid)s concentrations in agricultural 
fields adjacent to major roads66. Fields used for growing 
different crops can differ in heavy metal(loid)s con-
stituents, owing to variations in agricultural cropping 
and irrigation practices; for example, vineyards in the 
Piedmont region of Italy have elevated copper and zinc 
levels due to the application of copper-containing and 
zinc-containing foliage spray to combat fungal disease50. 
Similarly, sewage-sludge application to individual agri-
cultural plots in England and Wales, despite being con-
ducted under regulatory constraints, was found to supply 
high levels of heavy metal(loid)s, including zinc, copper, 
nickel, lead, cadmium, chromium, arsenic and mercury, 
to the soil46.

The spatial distribution of heavy metal(loid)s at 
the regional scale is driven by factors that differ from 
those controlling variability within and between plots. 
Such factors include geogenic differences40, regional 
atmospheric deposition67, land-use distribution68 and 
the presence of major anthropogenic-emission sources. 
Heavy metal(loid)s occur naturally in the Earth’s crust, 
and tectonic and weathering processes that result in 
stratigraphic and sedimentological features largely 
explain regional variability in topsoil heavy metal(loid)s 
levels69. Atmospheric deposition of parent materials, for 
example, by dust storms, coupled with anthropogenic 
atmospheric emissions can result in unique spatial distri-
bution features along wind channels; a study in a major 
metropolitan area of northern China suggested that the 
south-eastern winds during the summer season were 
a key source of heavy metals for the region67. Indeed, 
agricultural fields close to large metropolitan areas are 
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Fig. 1 | The impact of soil pollution on SDGs. Soil pollution negatively impacts sustainability, specifically, hindering 
progress on a number of the Sustainable Development Goals (SDGs) set out by the United Nations.
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expected to have higher heavy metal(loid)s concentra-
tions than those in remote areas, owing to more intensive 
anthropogenic emissions42,66. Moreover, major anthro-
pogenic heavy-metal(loid)s-emission sources, such as 
mega-mining sites, large smelting facilities and large 
power plants and incinerators without adequate emis-
sion control, can result in elevated heavy metal(loid)s  
in agricultural soil on a regional scale70,71.

Global mapping of heavy metal(loid)s distribu-
tion in agricultural soils is lacking, but airborne heavy 
metal(loid)s distributions provide an indication of their 
global distribution in soil. Studies conducted under  
the United Nations’ Convention on Long-Range Trans-
boundary Air Pollution show that atmospheric concen-
trations of lead, cadmium and mercury are the highest 
over China, followed by India, the Middle East and 
northern Africa (Fig. 3a–c). Densely populated areas of 
Europe and North and South America also have high 
atmospheric concentrations of these metal(loid)s72.

Studies mapping soil heavy metal(loid)s concentra-
tions have been conducted on both national and con-
tinental scales, though global mapping has not been 
undertaken. The first harmonized sampling programme 
of agricultural soils in the EU found that 137,000 km2 of 
agricultural land requires further local assessment and 
remediation27. A meta-analysis of compiled regional  
data from south-western China indicates that high heavy 
metal(loid)s concentrations are present in agricultural fields 

in a region with high geogenic background concentra-
tions and extensive mining activities63,73. In eastern China, 
industrial facilities that have operated for several decades 
have caused high heavy metal(loid)s concentrations in 
agricultural soils74. Models using stable mercury isotopic 
analyses and geospatial climate and vegetation data sug-
gest that South America and East and Southeast Asia have  
relatively high mercury concentrations in soil75 (Fig. 3d).

Heavy metal(loid)s bioavailability
Although spatial distributions of metal(loid)s provide 
useful data on their impact in agricultural soils, the 
toxicity of heavy metal(loid)s is contingent on their bio-
availability, which is, itself, dependent on the oxidation 
state and specific chemical form of the metal(loid)s76. 
The bioavailability of a given metal(loid) can vary widely 
depending on the soil type. Only a small fraction of the 
heavy metal(loid)s in soils are freely available in soil pore 
water for plant uptake, and dissolved heavy metal(loid)s 
(usually present as free hydrated ions or complexed lig-
ands) often reach a dynamic equilibrium with the bulk of 
heavy metal(loid)s existing in the solid phase of the soil77. 
The distribution equilibrium is affected by soil pH, mois-
ture, organic-carbon content, redox conditions, carbonate 
content, sulfide content, clay minerals and metal-oxide 
content23,78–80, factors that can be modified by anthropo-
genic pollution. For example, irrigation with wastewater 
can reduce soil pH and increase soil organic matter45.
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Fig. 2 | Sources of heavy metal(loid)s pollution in agricultural soil. Major anthropogenic sources can be classified into 
three categories: agricultural, industrial and mining. Heavy metal(loid)s can enter agricultural soil through atmospheric 
deposition, following release into the atmosphere from fossil-fuel burning, waste incineration or cement manufacture. 
Heavy-metal(loid)s-contaminated runoff from mining and industry can enter waterways and reach agricultural land. The 
use of manure or sewage contaminated with heavy metal(loid)s to fertilize crops can also contaminate agricultural land.
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The inherent bioavailability of different heavy 
metal(loid)s also varies substantially. For instance, the 
concentration of lead in soil tends to be much higher 
than that of other heavy metal(loid)s, nearly 40 times 
higher than cadmium and 100 times higher than mer-
cury, due to the high natural background and high 
lead-emission levels23,78. However, lead has a low inher-
ent bioavailability because it forms insoluble compounds 
such as pyromorphite and adsorbs strongly to soil min-
erals such as manganese oxides81. In contrast, cadmium 
has a much higher bioavailability than lead, arsenic and 
mercury because it exists mainly in exchangeable phases 
and has a comparatively low adsorption potential82. 
The oxidation state of the heavy metal(loid)s can also 
change their bioavailability to the plants. For example, 
the As(III) oxidation state of arsenic causes a decrease in 
plant growth, stomatal conductance and photosystem II 
efficiency of Atriplex atacamensis, whereas As(V) does 
not impact these processes83.

Soil pH is among the most important environ-
mental factors controlling the bioavailability of heavy 
metal(loid)s84,85 and can drastically influence the sol-
ubility of soil metal(loid)s; for example, cadmium 
forms insoluble compounds under alkaline condi-
tions (above pH 7.5) but is highly soluble in acidic 
pH while increasing bioavailability82. Local pH and, 

thus, heavy metal(loid)s bioavailability, are impacted 
by dynamic biological systems, as in the rhizosphere, 
where local pH is influenced by root activities and soil 
amendments86–88.

Soil organic matter also influences the bioavailability 
of heavy metal(loid)s, but its effects are complicated. For 
instance, cadmium can adsorb onto carboxylic, phos-
phoryl, sulfhydryl and phenolic hydroxyl groups present 
in organic matter, reducing its bioavailability. However, 
dissolved humic substances can also form soluble com-
plexes with cadmium, increasing its bioavailability82. 
Humic acids can form complexes with mercury that are 
highly stable and have low mobility89,90, whereas com-
pounds of mercury and fulvic acids are more labile and, 
thus, more bioavailable than mercury–humic-acid 
complexes78,91. Roots release low-molecular-weight 
organic compounds such as oxalic acid that act as metal 
chelators, which increase the bioavailability of certain 
heavy metal(loid)s47. Binding to non-organic matter 
can also influence bioavailability. Among different 
geochemical fractions of heavy metal(loid)s, exchange-
able and easily mobilized metal(loid)s species, such as 
carbonate-bound metal(loid)s, are more bioavailable and 
toxic than those species that are less easily mobilized, 
such as Fe and Mn oxide bound, organic matter bound 
and residual fractions92.
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Bioremediation
The interactions between plants, microbes and heavy 
metal(loid)s are exploited in bioremediation strategies, 
which use living organisms for soil decontamination93,94. 
These organisms can be plant or microbial species that 
are resistant to toxic heavy metal(loid)s and capable of 
thriving in highly contaminated agricultural soil. Some 
of these species can adsorb heavy metal(loid)s or release 
compounds that bind with them95,96, thus, affecting con-
taminant bioavailability and toxicity. Other species can 
extract and remove heavy metal(loid)s from the soil 
environment97.

Bioremediation tends to be more sustainable than 
traditional thermal or physico-chemical techniques 
such as soil washing, which can remove or destroy 
living organisms and soil organic matter, jeopardizing 
long-term soil health and diminishing post-remediation 
soil productivity98. Bioremediation also brings other sus-
tainability benefits, including decreased cost, increased 
worker safety and smaller life cycle environmental foot-
prints compared with traditional remediation methods98, 
maximizing the economic, social and environmen-
tal benefits of soil remediation99. These benefits have 

prompted the remediation industry to move towards such 
nature-based solutions100,101. In this section, we discuss 
three bioremediation approaches: phytoremediation,  
microbial bioremediation and integrated methods.

Phytoremediation
Phytoremediation for soil decontamination employs 
indigenous102 or imported species103 of plants, including 
ones that are genetically modified85,104. This approach is 
adaptable to different plot sizes through planting and 
cultivating an appropriate number of selected phytore-
mediation plants, and considering intrinsic biogeochem-
ical processes associated with plant growth, metal(loid)s  
speciation and changes in soil. Phytoremediation tech-
niques include phytostabilization, in which root exu-
dates reduce metal bioavailability in the rhizosphere,  
and phytovolatilization, which exploits plant evapo-
transpiration systems to transfer contaminants from 
the soil to the atmosphere105 (Fig. 4). However, the most 
commonly used and well-studied phytoremediation 
technique is ‘phytoextraction’105. In this approach, 
plant species take up heavy metal(loid)s from the soil 
through their roots; the heavy metals then accumulate 
in the plant’s above-ground biomass, which is harvested. 
The biomass is typically incinerated, leaving behind a 
metal-concentrated bottom ash usually disposed of in 
landfills106,107. Particles that result from biomass com-
bustion can pose a health risk and incineration requires 
appropriate filtration or scrubbing techniques. However, 
harvested biomass can be used as a feedstock for bio-
energy production108–110 or pyrolyzed to form biochar111, 
with appropriate safety considerations.

Soil–plant–metal interactions. Heavy metal(loid)s enter 
plant tissue through various pathways (Fig. 4). For exam-
ple, on a molecular level, plant-root systems are not 
completely selective and will take up heavy metal(loid)s 
from interstitial soil water, such as cadmium and arsenic, 
that have properties similar to nutrients required by the 
plant, such as zinc and calcium112–114. After entering root 
systems, heavy metal(loid)s are translocated from the 
roots to shoots and leaves, and then to fruits or seeds. 
Studies have also shown that heavy metal(loid)s will also 
enter plants from the atmosphere via foliar transfer115, 
although unlike soil–root transfer, the molecular mech-
anisms involved in atmosphere–leaf transfer are not well 
understood.

Heavy metal(loid)s concentrations, the presence 
of chelating compounds, plant characteristics and soil 
properties all affect soil–plant–metal interactions and 
plant uptake rates116–120 and, therefore, the effective-
ness of phytoremediation. For instance, metal(loid) 
ions can form insoluble complexes, causing precipita-
tion on soil-particle surfaces that inhibits their uptake 
by plants. Complexation of heavy metal(loid)s with 
larger molecules of soil organic matter can also hinder 
plant uptake. Plant Fe2+ uptake systems are upregulated 
in iron-deficient soil, allowing more Cd2+ to be taken 
up by root cells through Fe2+ channels121. Similarly, 
elevated concentrations of Zn2+ and Ca2+ can act as 
competitors to Cd2+ for plant uptake112, mitigating cad-
mium toxicity towards the plant or enhancing essential 
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Fig. 4 | Phytoremediation. Natural methods of removing or detoxifying soil metal(loid)s, 
and supplementary methods to increase phytoremediation efficiency257. Roots can absorb 
heavy metal(loid)s from the soil or release factors to stabilize heavy metal(loid)s and 
prevent bioaccumulation (phytostabilization). Soil microbes can release factors to aid  
absorption of heavy metal(loid)s (rhizoremediation). Once taken up by roots, heavy 
metal(loid)s can translocate to the above-ground biomass of the plant, where they can 
be lost by transpiration (phytovolatilization) or be removed from the field by harvesting 
the plant. Adapted from reF.257, CC BY 3.0.
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mineral-element uptake113. Methods to augment bio-
mass generation and heavy metal(loid)s uptake have 
been developed, including the application of artificial 
light122,123, chemical supplementation124,125, electrical-field 
treatment126, microorganism inoculation127 and gene 
transfer128.

Plant selection. Plant selection is a critical step in phy-
toremediation, as species vary widely in their abil-
ity to uptake or immobilize different contaminants. 
Although indigenous species are preferred because 
they are adept at surviving in local environmental con-
ditions, the use of introduced species might be neces-
sary to speed up remediation105. Regardless of origin, 
hyperaccumulators129,130 (plant species that extract large 
amounts of heavy metal(loid)s) are advantageous to use 
as they can speed up remediation of sites contaminated 
with high levels of heavy metal(loid)s. However, as they 
tend to take up a limited variety of heavy metal(loid)s129, 
hyperaccumulators might not be suitable for soils con-
taminated with many different metal(loid)s species131. 
In these cases, fast-growing and high-biomass phy-
toremediation plants including willow, eucalyptus 
and poplar trees can be used to extract a wide range  
of heavy metal(loid)s from soil, although application of  
such plants may prevent agricultural production for 
years or possibly decades due to their relatively slow 
metal-extraction rates132–134. However, it is feasible for 
farmers to apply intercropping techniques, which ena-
ble the growth of phytoremediation plants alongside  
agricultural crops135,136.

Hyperaccumulators are deemed most suitable for use 
on occupied agricultural sites to reduce heavy metal(loid)s  
contamination in developing countries, where there is 
great pressure for crop production137. To assist in this 
context, research has focused on the identification of 
hyperaccumulator species that are able to grow alongside 
crops138–140, allowing remediation of the soil and the pre-
vention of contaminants from endangering food crops 
simultaneously. Other research has focused on the use 
of crop plants that are able to take up contaminants but 
do not bioaccumulate them in edible parts; for example, 
crops may produce a grain that is suitable for animal 
consumption, while contaminants are enriched in the 
shoots or roots, which can then be removed as part of a 
phytoextraction strategy141. The main drawback to this 
approach is that heavy-metal(loid)s-extraction rates can 
be relatively low and use of these plants can prevent the 
growth of more valuable crops.

A wide variety of hyperaccumulator species specific 
for a range of metal(loid)s species have been identi-
fied, including the Cretan brake fern Pteris cretica for 
arsenic142, Sedum plumbizincicola of the Crassulaceae 
family for cadmium and zinc143,144, the grass species 
Pogonatherum crinitum for lead145, Celosia argen
tea (the plumed cockscomb or silver cock’s comb) 
for manganese146 and Pronephrium simplex of the 
Thelypteridaceae family for rare-earth elements147. 
The increasing pool of hyperaccumulators, screened 
and selected from nature, offers new options to tackle 
difficult-to-treat sites. Meanwhile, researchers are 
developing transgenic plants to enhance the resistance, 

volatilization and accumulation of heavy metals in 
selected plants148,149. However, biosafety remains a con-
cern due to potential transfer of conditional lethality and 
antibiotic-resistance markers to higher levels of the food 
chain150,151.

Field successes and challenges. Many laboratory studies 
on phytoremediation have been conducted on spiked 
soils containing concentrations of heavy metal(loid)s  
hundreds or thousands of times higher than those 
found at contaminated sites152–154. The rationale for this 
method is to identify hyperaccumulator species more 
easily and better elucidate the molecular mechanisms at 
work by subjecting plants to high stress levels. However, 
care must be taken in extrapolating the data from such  
experiments and applying it to field operations.

In recent years, there has been an increasing number 
of field trials to verify the effectiveness of phytoremedi-
ation strategies at more environmentally relevant con-
centrations, as well as to determine field-related factors 
influencing their efficiency155. Phytoremediation field 
trials have been carried out globally, with the major-
ity conducted in China105 and preliminary large-scale 
(>500 m2) phytoremediation field trials have been 
carried out for various heavy metal(loid)s contam-
inants in China, Switzerland, Germany, France and  
so on105. These studies provide evidence to evaluate 
the resilience, stability, suitability and effectiveness of 
phytoremediation plants under various environmental 
conditions. The initial large-scale phytoremediation 
field trials on heavy-metal(loid)s-contaminated soils 
were conducted in the early 1990s156, when it was sug-
gested that this approach could reduce metal concen-
trations to acceptable ranges on otherwise productive 
land. Since then, many greenhouse pot studies and 
small-scale outdoor field trials have been conducted, 
which have confirmed various hyperaccumulator spe-
cies as being effective in reducing the soil concentration 
of a range of heavy metal(loid)s and helped identify 
practices to increase uptake levels. Plant density157, 
initial plant size119, cropping and harvesting strategies 
such as double cropping158,159, transplantation and dou-
ble harvesting158,159 have been identified as crucial fac-
tors affecting success in these studies; however, these 
small-scale field studies, often conducted at the metre 
scale, suffer from inconsistency owing to their small 
size. Phytoremediation efficiency is also affected by soil 
heterogeneity160; hyperaccumulators are often identified 
and selected for highly contaminated soils, but may be 
less effective in soils with a lower degree of contamina-
tion. In addition, influencing parameters can vary dur-
ing field treatments, meaning that long-term studies that 
report annualized treatment efficiencies are preferable to 
shorter trials161,162.

More recently, larger, hectare-scale field trials have 
been performed. Variability in the results from these 
larger trials tends to be lower than that seen among 
smaller studies (Table 1). An agricultural trial across 
11.1 hectares grew the hyperaccumulator species  
P. vittata and S. alfredii at a site previously contamina-
ted with lead (351 ppm), cadmium (320 ppb) and arsenic 
(37 ppm) in the Guangxi Zhuang Autonomous Region in 

Hyperaccumulators
Plant species that extract and 
concentrate certain heavy 
metal(loid)s within their 
biomass when grown in 
metal-contaminated soils.
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Table 1 | Results of large-scale phytoremediation field studies in agricultural soil polluted by heavy metal(loid)s

Plant 
species

Plot 
size 
(m2)

Soil 
texture

Soil 
pH

Initial 
soil OM 
(g kg−1)

Initial 
soil HM 
(mg kg−1)

BCFa TFb Metal(loid)s 
removalc

Key findings Ref.

Morus 
alba

600 – 6.9 – Cd (3.2) 1st year <0.09 (s) <0.3 (s) 3–7 g ha−1 year−1 Cd and Pb mostly 
accumulate in root tissue, 
but not in fruits, indicating 
the trees could be used as 
a crop substitute

251

2nd year <0.08 (s) <0.3 (s) 2–8 g ha−1 year−1

Pb (181.2) 1st year <0.02 (s) <0.6 (s) 40–85 g ha−1 year−1

2nd year <0.008 (s) <0.2 (s) 10–42 g ha−1 year−1

Zea mays 675 Silt loam 5.8 53 Pb 
(5,844.2)

0.06 (r) – 7 ,181 g ha−1 year−1 Each hectare can produce 
~25 tonnes of corn grain 
for animal feed; biomass 
can generate bioenergy 
fuel equivalent to 1,545 GJ

141

0.01 (s) 0.25 (s)

0.04 (l) 0.69 (l)

Solanum 
nigrum

1,500 Sandy 
loam

6.2 138 Cd (1.91) 5.2 (ap) – <233 g ha−1 The plants accumulated 
Cd in their biomass, 
enhanced by double 
cropping and sequential 
harvesting

158

Averrhoa 
carambola

1,500 Loam 6.1 43 Cd (1.6) – – 213 g ha−1 High-density A. carambola 
removed 5.3% of the 
total Cd within one 
season; this decreased Cd 
bioavailability and uptake 
(63–69%) by vegetables 
grown afterwards

252

Salix sp. 1,710 Sandy 
loam

4.0 30 Cd (2.8) 3.61 (ap) 0.60 (ap) 95 g ha−1 Repeated harvesting of 
the woody plants prior to 
leaf fall ensured effective 
soil decontamination

253

Pb (283) 0.02 (ap) 0.38 (ap) 55 g ha−1

Zn (295) 1.16 (ap) 0.29 (ap) 3,320 g ha−1

Salix sp. 2,100 Sand 6.6 – Cd (6.5) 4.3 (s) – 88 g ha−1 year−1 Certain Salix species 
produced up to 
12.5 tonnes of dry 
biomass per hectare per 
year; Cd and Zn removal 
increased by 40% with 
leaf harvest

254

9.2 (l)

Zn (377) 1.8 (s) 3,497 g ha−1 year−1

10.8 (l)

Zea mays 
and Pteris 
vittata

400 – 6.4 – As (93.6) 5.51 (l) 8.1 (l) 113 g ha−1 Phytoaccumulators grown 
with maize, limiting As 
accumulation in maize 
grains; planting crops in 
different angular directions 
improved soil nutrient 
availability and As uptake

255

Zea mays 4,050 Sand 6.0 50 Cd (67) 0.01 (s) – 6.4–10.4 g ha−1 Produced biomass 
for generating 
33,000–46,000 kWh  
of renewable energy  
per hectare per year

256

Pb (184) 0.02 (s) 28–46 g ha−1

Zn (355) 0.41(s) 1,447–2,826 g ha−1

Salix sp. 10,000 – 5.6 19 Cd (5.7) 9.82 (l) – 82–113 g ha−1 year−1 Several decades of 
phytoremediation with 
Salix required to reduce 
the Cd content of the 
soil from 5 to 2 mg kg−1, 
but could be used for 
bioenergy feedstock

164

Pteris 
vittata 
and 
Sedum 
alfredii

111,000 – – – Cd (0.32) – – 85.8% (re) Phytoremediation 
decreased soil HM 
concentrations below 
national standards at a 
cost of US$75,375.20 ha−1 
or US$37.70 m−3 of soil, 
lower than traditional 
remediation technologies

163

Pb (350.5) 30.4% (re)

As (36.66) 55.3% (re)

–, data not available; (ap), above-ground part; As, arsenic; BCF, bioaccumulation factor; Cd, cadmium; HM, heavy metal(loid); (l), leaf; OM, organic matter; Pb, lead; 
(r), root; (re), removal efficiency; (s), stem; TF, translocation factor; Zn, zinc. aThe BCF represents the ratio of pollutant concentration in the organism to the soil.  
bTF is the ratio of HMs in the shoots and roots of a plant. It represents the ability of a plant to translocate the metal(loid)s from roots to shoots and/or leaves.  
Only trials with plot sizes larger than 500 m2 are shown. Heavy-metal concentrations represent the mean total concentration for the whole plant, unless stated 
otherwise. cRemoval represents grams of HMs removed per hectare, unless stated otherwise.
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south-western China163. After two years, soluble concen-
trations of lead, cadmium and arsenic were reduced by 
30.4%, 85.8% and 55.3%, respectively. Other large field 
trials have generally demonstrated that phytoremedia-
tion is a promising remedial approach, which can be far 
more cost-effective than traditional alternatives163.

Recent studies have aimed to evaluate and enhance 
the sustainability of phytoremediation. The assessment 
of a short-rotation willow coppice phytoremediation 
trial at a heavy metal(loid)s-contaminated agricultural 
site in Belgium showed this approach to be the most 
sustainable alternative among various remediation 
options, due to its capacity to capture atmospheric car-
bon in plant biomass, while simultaneously treating 
soil contamination164. The use of organic amendments 
derived from biological waste (such as compost165, 
sewage sludge166 and manure167) and industrial waste 
(such as fly ash and red mud) to enhance phytoreme-
diation have been explored, but some debate remains as 
to whether these amendments contain harmful levels 
of contaminants themselves168–170 and if they actually 
improve phytoremediation performance105.

Overall, field trials have been somewhat inconsist-
ent in effectiveness, even among plants of the same 
species grown in the same plot171,172. There are several 
plausible reasons for this inconsistency. First, phytore-
mediation efficiency is highly influenced by environ-
mental conditions such as contamination level, soil clay 
content, weather patterns, soil moisture, organic matter 
content, pH and salinity173,174. Although these parameters 
are generally homogenous and set at favourable levels 
in indoor pot experiments, field environments can be 
highly heterogeneous. Extrapolation of laboratory results 
might have caused overly optimistic predictions of 
uptake levels of heavy metal(loid)s in the field175. Second, 
the success of phytoremediation depends on the location 
of field sampling points, but field heterogeneity causes 

large differences from one sampling point to the next, 
often making the interpretation of results challenging.

Microbial bioremediation
Microorganisms exist at high concentrations in agricul-
tural soils176–178 and possess genes enabling their survival 
in contaminated soil environments. Many microorgan-
isms are genetically resistant to heavy metal(loid)s179 and 
some can survive even under extreme heavy metal(loid)s 
stress. Native microbes can facilitate the reduction of soil 
pollution levels or microbes (sometimes, ones that have 
been genetically engineered) can be introduced to pol-
luted sites to reduce soil metal(loid)s concentrations in 
a process known as microbial biomediation180. Microbe–
heavy-metal(loid)s interactions have been studied 
intensively181 and a diverse range of microbial species 
and mechanisms that transform metal(loid)s to chemical 
species of lower solubility for immobilization, or spe-
cies of higher solubility for removal181,182, have now been 
identified180,183,184 (Fig. 5). Here, we discuss soil–micro-
organism–metal interactions and two microbial biore-
mediation approaches: monitored natural attenuation  
and engineered microbial bioremediation.

Soil–microorganism–metal interactions. Biogeochemi-
cal processes facilitated by microbial activities form the 
basis of microbial bioremediation185,186. A crucial medi-
ator of remediation187 is the bacterial secretion of sidero-
phores, which primarily transport iron from low-iron 
soils to cells through specific receptor and transport 
systems188. Fortuitously, siderophores also bind to heavy 
metal(loid)s187,189–191; for example, the bacteria Alcaligenes 
eutrophus secretes siderophores that bind with cad-
mium, zinc and lead192. Bacteria then protect themselves 
from siderophore-bound heavy metals by producing 
outer-membrane proteins that facilitate the formation 
of bioprecipitates, which have low environmental risk 

• Complexation (including 
metal-chelate complexes)

• Adsorption-coupled 
reduction

• Microprecipitation
• Ion exchange
• Physical adsorption

Methylation and/or reduction

Metal-containing
organic compounds

MeHg+

Hg2+, Hg0

As(III)

As(V)

Metal Metal movementsSiderophores

Biodegradation

Biosynthesis
Bioleaching

–S

–CO
3

–S
–PO

4
–OH

Bioaccumulation
Bioassimilation

Bioprecipitation

Dealkylation and/or oxidation
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Fig. 5 | Microbial bioremediation. Processes by which bacteria can mediate the removal or detoxification of heavy 
metal(loid)s from agricultural soil. Bacteria can interact with heavy metal(loid)s directly, accumulating them on the cell 
surface (biosorption). They can also reduce or oxidize metal(loid) species and synthesize or degrade metal-containing 
organic compounds via catalytic reactions (biosynthesis or biodegradation). Sulfur-oxidizing bacteria can release acids 
and dissolve metal-containing compounds for leaching of metals (bioleaching). Sulfate-reducing bacteria can precipitate 
metals by formation of low-mobility sulfides (bioprecipitation). Bacteria can also accumulate metals in the intracellular 
space by using proteins in their cellular processes (bioaccumulation). Bacteria assimilate metals via iron-assimilation 
pathways using siderophores (bioassimilation). CO3, carbonate CO3

2−; OH, hydroxyl OH−; PO4, phosphate PO4
3−; S,  

sulfide S2−. Adapted with permission from reF.258, Elsevier.

Siderophores
Chelating compounds secreted 
by microorganisms that bind 
with iron and other metals, 
increasing their bioavailability.
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due to low bioavailability192. As siderophore production 
is boosted when iron levels are low, applying lime to con-
taminated soils can enhance bioremediation efficiency 
by reducing iron availability to the microbes193.

Bioleaching and bioprecipitation are mechanisms  
of microbial bioremediation that rely on the presence of  
sulfur-oxidizing bacteria (SOB) and sulfate-reducing 
bacteria, respectively, and play a crucial role in deter-
mining the relative abundance of the common oxida-
tion states of sulfur in nature194. Bioleaching involves 
the release of metal ions through the mineral dissolu-
tion, for example, by sulfuric acid produced by SOB. 
Dissolution of metals by sulfuric acid subsequently 
increases sulfur bioavailability to sulfate-reducing bac-
teria, which facilitates the bioprecipitation of metals as 
low-mobility sulfides, effectively removing them from 
the reactive-metal pool. Laboratory experiments on a 
multi-metal-contaminated soil by inoculating an SOB 
showed that metal bioleaching levels were as high as 
74% for cobalt, 69% for copper, 69% for manganese and  
68% for nickel after six months, the majority of which 
(80–98%) bioprecipitated as stable sulfide species195. 
Subsequent studies exploited sulfur-cycle bacteria to 
reduce risks posed by zinc, copper, chromium, lead and 
nickel in the soil. In this case, the study found that intro-
duced microbial species were able to outperform indige-
nous species due to their higher sulfur-oxidizing activity196. 
Bioleaching of heavy metal(loid)s from exchangeable, 
carbonate-bound, Fe-oxide-bound and/or Mn-oxide- 
bound, organic-matter-bound and residual fractions were 
observed after only one month because of SOB activity196. 
Several bacterial species associated with the natural sul-
fur cycle, such as Acidithiobacillus spp., Acetobacter spp., 
Arthrobacter spp. and Pseudomonas spp., can be exploited 
for bioleaching of heavy metal(loid)s in soils and some 
fungi species, including Penicillium spp., Aspergillus spp.  
and Fusarium spp.197–200. The activity of Penicillium 
chrysogenum, for example, can mobilize cadmium, 
copper, lead and zinc in contaminated soils, leading to 
enhanced bioleaching201,202.

Biological reduction provides another important 
route for microbially assisted soil remediation because 
the toxicity of heavy metal(loid)s depends on their oxida-
tion state. For example, hexavalent chromium (Cr(VI)) 
is toxic and carcinogenic, whereas trivalent chromium 
(Cr(III)) is considered non-hazardous, which enables the 
remediation of Cr(VI)-contaminated soils by reduction. 
Bacterial strains resistant to and able to reduce elevated 
Cr(VI) concentrations include Pseudomonas fluorescens, 
P. aeruginosa and Enterobacter cloacae203. This biologi-
cal reduction process can be achieved in inundated soils 
(such as in rice paddies), where oxygen levels are low, or 
in artificially induced reductive environments, for exam-
ple, those in which an electron donor is added to induce 
microbial growth204,205.

Monitored natural attenuation. The risk posed by heavy 
metal(loid)s in soil environments can naturally attenuate 
over time without specific remedial treatment206. This 
phenomenon has been observed at abandoned historic 
mining sites and adjacent agricultural fields throughout 
the world207. Natural attenuation processes comprise 

biological, physical and chemical mechanisms208–210, but 
the activities of indigenous microbes often drive atten-
uation; these activities include metal(loid)s sequestra-
tion, ion efflux (which can lead to metal precipitation as 
carbonates near and around cells)211,212 and extracellular  
chelation. Indigenous microbes can also mediate bio-
geochemical reactions that convert mobile heavy  
metal(loid)s into stable compounds of low bioavaila-
bility208 through adsorption of metal(loid)s to organic 
matter213, the formation of carbonates and sulfides 
(facilitated by Kocuria flava, Sporosarcina pasteurii 
and Terrabacter tumescens)214,215, binding to iron and 
manganese oxides216, reduction of metal(loid)s to aid 
the formation of stable compounds (by Escherichia 
coli, Staphylococcus aureus and Staphylococcus xylosus, 
for example)208,217 and the oxidation and hydrolysis of  
aluminium, iron and manganese species (Fig. 5).

Natural attenuation often takes years or decades to 
reduce risk levels, although it remains a viable option 
for remediation when coupled with an appropriate and 
robust monitoring plan218. In some cases, bioremedia-
tion based on monitored natural attenuation may be the 
only practicable option to lower risk, given the difficul-
ties and high costs inherent in treating some agricultural  
sites, particularly in developing countries208. At these sites,  
agricultural soil-management approaches, such as no-till 
farming and the use of cover crops, can influence micro-
bial respiration and plant growth219,220, thus, influencing 
natural-attenuation rates. For instance, no-till farming 
increases microbial biomass, soil carbon content and 
the activity of microbial enzyme activities (such as dehy-
drogenases, cellulases, xylanases, β-glucosidases, phenol 
oxidases and peroxidases) in agricultural soil221, which 
can accelerate the formation of stable fractions of heavy 
metal(loid)s.

Engineered microbial bioremediation. Two types of 
engineered microbial bioremediation exist: biostimu-
lation and bioaugmentation. Biostimulation involves 
providing indigenous soil microbes with additional 
nutrients, electron donors or electron acceptors in order 
to increase their capacity for immobilizing or degrading 
contaminants in the soil. This approach has been used in 
remediating heavy metal(loid)s222, gasoline additives223, 
broad-range hydrocarbons224 and radionuclides225. 
Although indigenous microbes are often excellent candi-
dates for bioremediation because they are acclimated to 
site conditions226, laboratory-grown microbial strains can 
be added to soil, a process known as bioaugmentation227. 
Current commercial bioaugmentation applications use 
microorganisms collected from environmental samples 
and enriched in laboratories. There are many successful 
biofertilizers produced from plant-growth-promoting 
microorganisms and applied safely in the field228,229, 
but, often, microorganisms cultivated under controlled 
conditions do not survive once placed in competition 
with indigenous microorganisms in field conditions230. 
Further research is needed to improve the perfor-
mance of these cultivated microorganisms under field  
conditions for heavy metal(loid)s immobilization.

Genetic-engineering techniques can be used to 
improve microbial mechanisms for heavy metal(loid)s  

Lime
Calcium-rich alkaline-soil 
amendments, including marl, 
chalk, limestone or hydrated 
lime.
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resistance231. For example, the introduction of a gene 
encoding phytochelatin synthase from Schizosacc
haromyces pombe, SpPCS, into E. coli can enhance the 
cadmium uptake of E. coli by 7.5-fold232. Phytochelatins, 
the protein products of phytochelatin synthase activity, 
bind strongly to toxic elements such as cadmium, arse-
nic, lead and mercury232–234, and render them non-toxic. 
Insertion of a gene encoding arsenite S-adenosyl methio-
nine methyltransferase (arsM) into Sphingomonas 
desiccabilis and Bacillus idriensis similarly enables a 
tenfold increase in the production of methylated arse-
nic gas235, allowing arsenic to volatize from the soil. 
Transferring genes from heavy-metal(loid)s-resistant 
microbes to other microbial species suitable for micro-
bial bioremediation has potential to increase bioreme-
diation effectiveness, subject to regulatory approval 
and oversight212. However, biosafety issues, including 
the possibility of horizontal gene transfer, must be 
taken into account before introducing these organisms  
into the environment230.

Integrated methods and phytomanagement
Microbially mediated processes can enhance the effi-
ciency of phytoremediation236 by transforming heavy 
metal(loid)s, rendering metabolic nutrients and miner-
als more bioavailable to aid plant growth, stimulating 
systems that regulate plant heavy metal(loid)s stress 
responses or aiding the production of plant hormones 
that increase plant growth237 (Fig. 4). The bacterial spe-
cies Pseudomonas aeruginosa, Pseudomonas fluorescens 
and Ralstonia metallidurans produce siderophores that 
increase contaminant bioavailability to roots, leading to 
enhanced phytoextraction efficiency238. For example, 
augmentation of soil with these strains can increase 
chromium and lead uptake by plants by as much as 
5.4-fold238. Moreover, microorganisms such as spe-
cies of Bacillus, Achromobacter, Stenotrophomonas, 
Brevundimonas ,  Ochrobactrum ,  Pseudomonas , 
Microbacterium, Comamonas and Sinorhizobium can 
lower the toxicity and increase bioavailability of arsenic 
to plants by increasing arsenic mobilization239. A bac-
terial consortium of Bacillus methylotrophicus, Bacillus 
aryabhattai and Bacillus licheniformis applied to phy-
toremediation sites promotes plant growth through 
enhancing nitrogen fixation and phosphate solubiliza-
tion, and producing siderophores and other molecules 
that affect plant hormonal processes. This consortium, 
when applied to Spartina maritima, effectively improved 
root growth by approximately 60% and bioaccumulation 
of cadmium, arsenic, copper, lead and zinc by between 
17% and 65%240.

The most significant drawback to bioremediation 
is the time required to complete treatment, which is 
sometimes overcome through its coupling with other 
remediation technologies to shorten treatment length. 
For example, the production of H+ and OH− ions during 
electrokinetic treatment of soil can produce potential gra-
dients that cause unwanted bands of high residual metal 
concentration241; these issues are mitigated by phytoreme-
diation techniques, as plant roots can extract H+ and OH− 
and residual heavy metal(loid)s242. Moreover, electrical 
fields induced by electrokinetic treatment can transport 

pollutants from deep in the soil up to the rhizosphere, 
enhancing phytoremediation effectiveness126. Solanum 
tuberosum showed higher zinc and copper accumulation 
in plant root under supplement of alternating current 
compared with the control in a laboratory study243.

The integration of remediation technologies pro-
vides a scenario where ecosystem services such as nutri-
ent cycling, carbon sequestration and water storage are 
restored244. Moreover, plants grown in contaminated 
agricultural fields undergoing bioremediation can be sold 
as bioenergy products or other profitable products245. 
Moreover, in comparison with traditional remediation 
strategies, phytomanagement focuses on both risk miti-
gation and commercial viability by using plants to control 
contamination while producing marketable biomass, and 
has been suggested as a viable strategy that can be carried 
out in large-scale applications246. Phytomanagement is 
considered as either a low cost or a profitable strategy for 
producing valuable plant biomass such as bioenergy or 
timber crops, or it can be used to prevent decreased food 
production on contaminated lands246,247.

Summary and future perspectives
The accumulation of heavy metal(loid)s in agricultural 
soils is an obstacle to achieving global food safety and 
security. Bioremediation is a promising nature-based 
solution for treating heavy metal(loid)s contamination; 
however, several issues must be addressed before it can 
be more broadly implemented.

First, it will be beneficial to accelerate global soil 
mapping and establish regional models that can ade-
quately predict contaminant distributions and identify 
pollution sources248. Second, the measured effective-
ness of bioremediation in the field has been somewhat 
inconsistent, attributed to heterogeneity in field condi-
tions and artefacts caused by evaluating treatments on 
a spot-by-spot basis, rather than employing field-wide 
assessment. Importantly, variability tends to decrease 
with increasing plot size249, showing the importance of 
large-scale field trials. Third, field stations are needed 
to provide valuable insights into the mechanisms that 
render heavy-metal(loid)s-contaminated sites resistant 
to treatment. We suggest there is a need for improved 
monitoring instrumentation to measure trends in micro-
bial dynamics, metal speciation and fractions, and soil 
environmental conditions (pH, temperature, redox 
potential and soil gases), as all these factors can mediate 
bioremediation effectiveness. Fourth, further research is 
required in order to decrease clean-up time and expand 
the applicability of bioremediation techniques to include 
more sites. Seeking out new natural species for this pur-
pose and developing new genetic technologies that can 
modify and design the functionality of plant species 
and microbial strains could play a leading role in future 
development.

Global agricultural soil pollution by heavy 
metal(loid)s represents one of the biggest challenges 
for sustainable development, and developing coun-
tries are particularly vulnerable to this threat to food, 
health and livelihoods. By the 5th session of the United 
Nations Environment Assembly in 2021, institutions 
including the WHO and the FAO will elaborate on 
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guidelines for the prevention and minimization of soil 
contamination, specifically including the use of nature- 
based solutions250. In this context, it is imperative that 
the inter national community realizes the seriousness 
of the threat, takes actions to prevent further pollution 
and instigates the remediation of contaminated sites 

with environmentally friendly techniques. Policymakers 
should foster a bioremediation-enabling environment 
through policy instruments and increased field-based 
research funding.
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