20.109 Foci Analysis using Deep Convolutional Neural Networks

Dushan N. Wadduwage, 20190926

Data

Analysis Pipeline

Perceptron

Jain et. al. 1996

McCulloch & Pitts 1943 Rosenblatt 1958

Artificial Neural Networks (ANNs)

$$\mathbf{y} = \begin{pmatrix} 0, & \text{if } \sum w_i x_i \leq u \leq 0 \\ (w_i x_i - w_b) \\ 1, & \text{if } \sum w_i x_i \geq u > 0 \end{cases}$$

$$y_{1} = F_{1}(\{w_{ij}\}, \{x_{i}\})$$

$$y_{2} = F_{2}(\{w_{ij}\}, \{x_{i}\})$$

$$(\mathbf{y}_{1} \neq \mathbf{y}_{1} \in (w_{i}, \mathbf{y}_{1})) = F(\{w_{ij}\}, (x_{1}, x_{2}, ...))$$

$$y_N = F_N(\{w_{ij}\}, \{x_i\})$$

Image processing with ANNs

	27	27	27	28	30	29	28	26	25	24	24
	29	29	30	33	36	35	32	28	27	25	26
	32	34	36	38	40	40	37	32	29	28	27
	35	38	40	40	42	43	40	34	31	30	29
h	างอาป	is ³ fo	Ŵ	41	41	43	44	39	35	32	30
~ y	36	38	38	38	38	41	44	41	36	32	30
	34	35	35	35	36	37	40	38	36	33	32
	34	34	34	34	35	35	35	35	35	33	33
	31	33	33	32	33	32	33	33	33	33	34
	30	31	31	29	31	31	32	31	31	33	33
	29	29	29	30	28	30	30	30	31	31	32

 $\boldsymbol{y} = F(\boldsymbol{w}, \boldsymbol{x})$

What about *w* ?

nd by "training" through backpropagation

0

0

Architecture of the network

Fully connected neural network

Neuron 1

Weights = $\{w_0, w_1, w_2, ..., w_9\}$

 $y = \sum w_i x_i$

Outputs of the convolution layer

Input image

Activation function

Number of convolutional layers = 20 Maximum number of weights in layer = 36928 Number of weights ~ 750,000

Summary

- 1. Perceptron
- 2. Artificial Neural Networks, ANNs (multi layer Perceptrons)
- 3. Image processing with ANNs
- 4. Convolutional Neural Networks

http://introtodeeplearning.com

Analysis Pipeline

Demo