
M2D1: Complete *in silico* cloning of dCas9 & actual confirmation digest

- 10/8/19
- Design primers to dCas9
- 2. In silico PCR amplification, digest, and ligation
- 3. Actual (wet-lab) diagnostic digest of pdCas9

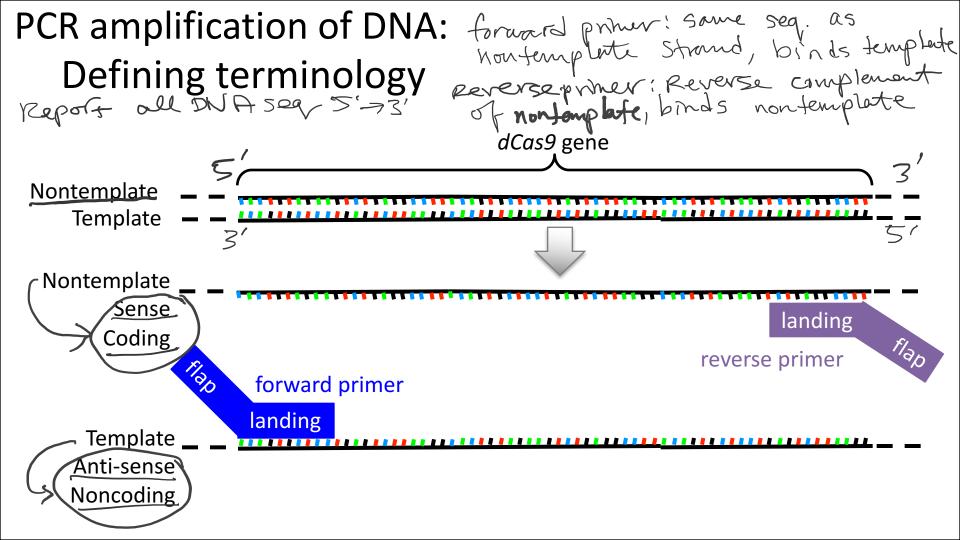
(Almost) done with Mod1!

- Data summary
 - draft due 10pm on Monday, October 14th
 - revision due 10pm on Saturday, October 26th
- Mini-presentation
 - due 10pm on Saturday, October 19th
- Blog post
 - due 10pm on Thursday, October 15th

Cloning of pdCas9:

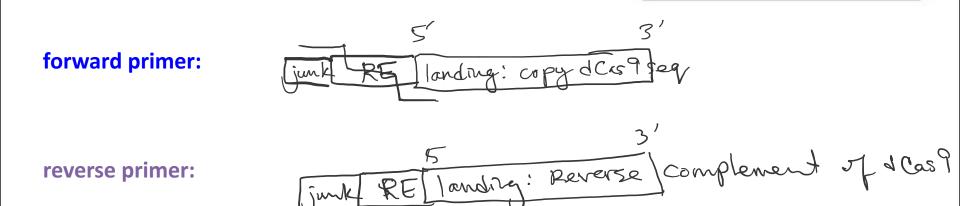
What enzyme is required?

1. PCR amplification of DNA:


DNA polymerase

2. Digestion:

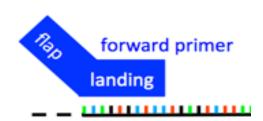
Restrictor enzymes= endonnellases


3. Ligation:

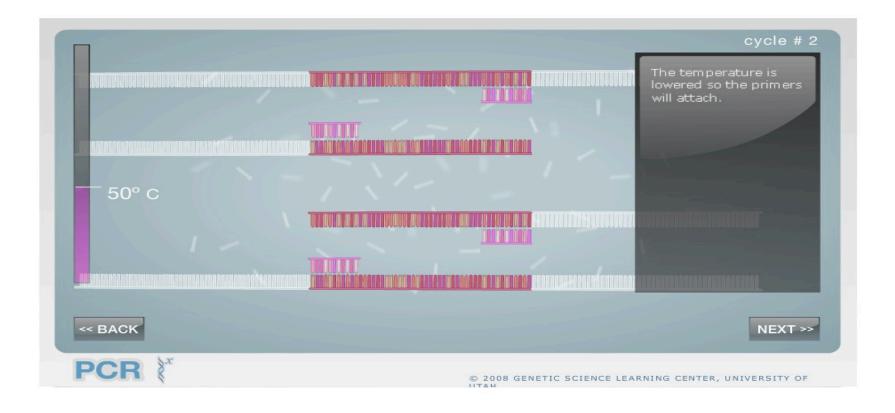
DNA vigase

PCR amplification of DNA: Designing primers

- Landing sequence: match to dCas9
- Flap sequence: contains endonuclease recognition sequence and junk DNA



BgIII


1. PCR amplification of DNA

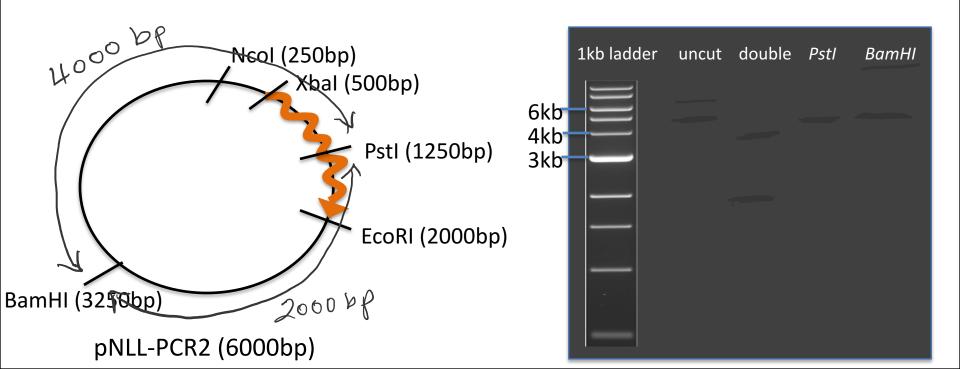
Primer design guidelines

- Length: 17-28 base pairs
- GC content: 40-60%
 - GC has _____ hydrogen bonds; AT has _____ hydrogen bonds
 - GC clamp at ends
- T_m(primer) < 65 °C 50% bound DNA, 50% unbound
- Avoid secondary structures
 - hairpins
 - complementation w/in primer sequence
- Avoid repetitive sequences
 - Max of 4 di-nucleotide repeats (ex. ATATAT)
 - Max of 4 bp in a run (ex. GATGGGG)

http://learn.genetics.utah.edu/content/labs/pcr/

Three major PCR steps—which temperature & why?

- Melt
 - -95°C
 - disrupt hydrogen bonds between bases DNA denatures
- Anneal
- T_m(primer) = 50% bound DNA T_{anneal} ~ T_m(primer) 5°C lower temp = more primer bound to 50I) must be adjusted for each primer
 - Extend
 - 72 °C (for Taq) > DNA polymerase
 - 1000 bases/min


Next steps in cloning pdCas9...

DPCRamplified dCas 9

- Z) digest of RE PCR aunticon (dCas9) +
- 3) ligation Reaction
- 4) Incubate ligation products of competent bacteria
- 5) mini prep DNA from bacteria
- 6) diagnostic digest (confirmation digest)

Confirmation digest considerations

- Do you have access to the enzymes?
- Are the two enzymes compatible?
- Are fragments easily distinguished on an agarose gel?

M2D2 homework—Sign up for Journal Club

- Sign up on wiki for which day you will present:
 M2D4 (October 22nd) or M2D6 (October 29th)
- Pick 1 of 20 papers, or suggest your own
- Reserve paper by adding name next to it [LMM/TR/Red]
 - First come, first served!
 - Only one T/R and one W/F student per article
 - Don't pick a paper randomly

Slot	Day 4 (T/R)	Day 6 (T/R)	Day 4 (W/F)	Day 6 (W/F)
1				
2				
3				
4				
5				
6				

M2D2 homework—Make a Journal Club presentation slide

To help you prepare for the Journal Club presentation, you will craft 1-2 slides using this article by Ji. et al. to present the data from Figure 2.

- Your slide(s) should show the data and highlight the key finding(s).
- The information should be clear and large enough to read.
- Keep text to a minimum. (NO captions on slide!)
- The title should state the take-home message of the data that are shown.

Today in lab

- 1. Reproduce in silico (in Snap Gene) the cloning of pdCas9
 - Design primers that would amplify the gene dCas9
 - Depict PCR amplification product
 - Digestion of dCas9 PCR product and vector by restriction enzymes
 - Ligation of insert and vector
- 2. Set up confirmation digests of pdCas9 for agarose gel electrophoresis (start at 3:15pm)
 - Choose restriction enzymes for diagnostic digest
 - Calculate volumes of digest components
 - Set-up digest and leave overnight at 37°C