20.109

LABORATORY FUNDAMENTALS IN BIOLOGICAL ENGINEERING

MODULE 2

EXPRESSION ENGINEERING

Lecture # 4

Leona Samson

April 2nd 2009

Snapshot of the next four weeks

We will eliminate the expression of various genes using

- (i) RNA interference technology
- (ii) Cultured mouse ES cells
- (iii) Chemiluminescent proteins
- (iv) DNA microarrays

siRNA knockdown of expression of Renilla Luciferase plus various mouse gene

Prepare cell extracts and measure Luciferase activities

siRNA knockdown of expression of Renilla Luciferase plus various mouse gene

Isolate total RNA in order to measure relative levels of all mRNAs – with special attention to YGI

Monitor mRNA expression level for every mouse gene in one single experiment.

How can we measure the level of thousands of mRNA species present in a particular cell type?

Now that we know the DNA sequence for every gene, this is possible!

How did we measure mRNA levels one at a time? This depends on Nucleic Acid Hybridization

The specificity of G
pairing with C and A
pairing with T (or U)
drives hybridization and
provides a mechanism
for quantitatively
assessing the amount of
a specific mRNA species
in cells.

Lets first back-up. How did we measure mRNA levels one or two at a time? Northern Blots

How to monitor mRNA expression level for every gene: Global transcriptional profiling

- · Carry out thousands Northern Blots?
- ·Instead DNA microarrays were developed
- DNA microarrays for global transcriptional profiling were not feasible before the sequencing of whole genomes.

The immobilized mRNA population is probed (hybridized) with ³²P-labeled DNA sequences specific for one or two genes

Paper towels

Paper wick

10XSSC

solution

Gel

Nylon membrane

Northern Blots

Immobilized mRNA population hybridized with labeled DNA probe representing one or two genes

DNA Microarrays

Immobilized DNA probes representing <u>all</u> possible genes hybridized with labeled mRNA population

Need to achieve two things:

- (i) Immobilize (array) thousands of DNA probes specific for each individual mRNA gene product
- (ii) Label mRNA populations

Up to 20,000 probes per slide
The probes can be cDNAs (~ 1Kb) or oligonucleotides
(20-70 mers)

Robots designed to spot up to 20,000 DNA probes per slide

The probes can be cDNAs (~ 1Kb) or oligonucleotides (20-70 mers)

The arrays we'll be using......

Agilent's non-contact industrial inkjet printing process uniformly deposits oligo monomers onto specially-prepared glass slides. Both the catalog and custom microarrays are manufactured using Agilent's non-contact in situ synthesis process of printing 60-mer length oligonucleotide probes, base-by-base, from digital sequence files. This is achieved with an inkjet process which delivers extremely small, accurate volumes (picoliters) of the chemicals to be spotted. Standard phosphoramidite chemistry used in the reactions allows for very high coupling efficiencies to be maintained at each step in the synthesis of the full-length oligonucleotide. Precise quantities are reproducibly deposited "on the fly." This engineering feat is achieved without stopping to make contact with the slide surface and without introducing surface-contact feature anomalies, resulting in consistent spot uniformity and traceability.

Ink-jet Technology

4x44K
spots
"features"

http://www.chem.agilent.com/en-US/products/instruments/dnamicroarrays/pages/gp557.aspx

Need to achieve two things:

- (i) Immobilize (array) thousands of probes specific for each individual gene
- (ii) Label mRNA populations

Copy the population of purified mRNA species such that they are fluorescently labeled - hybridize to the array

siRNA knockdown of expression of Renilla Luciferase plus various mouse gene

Isolate total RNA in order to measure relative levels of all mRNAs – with special attention to YGI

What's happening at each spot?

Hybridization

- mRNA present much higher in State A than State B
- mRNA present much higher in State B than State A
- mRNA present at equal levels in States A and B

Northern Blot vs. Microarray

Hierarchical clustering to group together similarly regulated genes

Each colored vertical line in the horizontal lane displays the relative expression level of a single mRNA

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14863-14868, December 1998 Cluster analysis and display of genome-wide expression patterns 13 time points, and several thousand genes

This is the "two color" technology (you will use something similar), but there is another common technology that uses one color....

Affymetrix Technology

Affymetrix has focused on light-directed synthesis for the construction of high-density DNA probe arrays using two techniques: photolithography a solid-phase DNA synthesis. Synthetic linkers are attached modified with photochemically removable protecting groups to a glass substrate and direct light through a photolithographic mask to specific areas on the surface to produce localized photodeprotection.

Figure 1. Synthesis Confirmation.									
Mask Cycles	1	2	3	4	5	6	7	8	
	Α	С	G	Т	Α	С	G	Т	
			Ш					Ш	Probes Synthesized
Probe 1	Α	С	-	T	-	С		Ш	ACTC
Probe 2			G	-	Α	-	G	T	GAGT
Probe 3	Α	-	G	-	Α	-	G	Ш	AGAG
Probe 4		С	-	Т	-	С	-	Т	СТСТ

From Computer Desktop Encyclopedia Reproduced with permission. © 2007 Affymetrix

Affymetrix Technology

From Computer Desktop Encyclopedia Reproduced with permission. © 2007 Affymetrix

RNA fragments with fluorescent tags from sample to be tested

From Computer Desktop Encyclopedia Reproduced with permission. © 2007 Affymetrix

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

Hybridized Probe Cell

Oligonucleotide "One Color Chips"

Array preparation

Target preparation

Yeast cells treated with DNA damaging agents like those in tobacco smoke

Affymetrix Oligonucleotide Based Expression Arrays

Jelinsky and Samson, 1999

Northern Blot vs. Affymetrix Chip

'Next Generation' Sequencing Technologies

Platform

Harvard/Danaher/Agencourt/ABI

454 Life Sciences / Roche

Solexa/Illumina

Helicos

Pacific Biosciences occupancy

Amplification Sequencing

Emulsion PCR Ligase

Emulsion PCR Polymerase - pyrosequencing

Bridge PCR Polymerase - reversible terminator

None Polymerase - single base extension

None Polymerase - active site

Shendure et al. Curr. Protocols Mol. Biol. 2008

1. PREPARE GENOMIC DNA SAMPLE

Adapters

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

2. ATTACH DNA TO SURFACE

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

3. BRIDGE AMPLIFICATION

Add unlabeled nudeotides and enzyme to initiate solid-phase bridge amplification.

The enzyme incorporates nucleotides to build double-stranded bridges on the solidphase substrate.

Denaturation leaves single-stranded templates anchored to the substrate.

Several million dense dusters of doublestranded DNA are generated in each channel of the flow cell.

7. DETERMINE FIRST BASE

Laser

First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.

8. IMAGE FIRST BASE

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

9. DETERMINE SECOND BASE

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

Reversible Terminator Chemistry

Bentley et al. Nature 456, 53-, 2008.

7. DETERMINE FIRST BASE

Laser

First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.

8. IMAGE FIRST BASE

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

9. DETERMINE SECOND BASE

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

10. IMAGE SECOND CHEMISTRY CYCLE

After laser excitation, collect the image data as before. Record the identity of the second base for each duster.

11. SEQUENCE READS OVER MULTIPLE CHEMISTRY CYCLES

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

12. ALIGN DATA

Align data, compare to a reference, and identify sequence differences.

In the MIT BioMicro Center

~70bp "reads"

7 million reads per channel (flow cell)!!!

From 7 million
sequences can count/
calculate the relative
abundance of each
original mRNA species i.e. the transcriptional
profile

'Next Generation' Sequencing Technologies

Harvard/Danaher/Agencourt/ABI

454 Life Sciences / Roche

Solexa/Illumina

Helicos

Pacific Biosciences occupancy

Amplification

Emulsion PCR

Emulsion PCR

Bridge PCR

None

None

Sequencing

Ligase

Polymerase - pyrosequencing

Polymerase - reversible terminator

Polymerase - single base extension

Polymerase - active site

Shendure et al. Curr. Protocols Mol. Biol. 2008