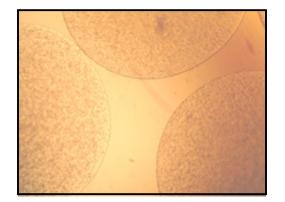
Biomaterials and Cell-Biomaterial Interactions

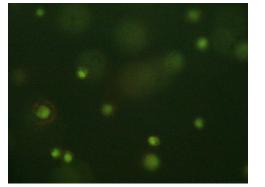
Module 3, Lecture 2

20.109 Spring 2008

Dr. Agi Stachowiak


Topics for Lecture 2

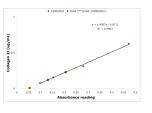
- Module 3 goals+assessments
- Introduction to biomaterials
 - properties and types of biomaterials
 - biocompatibility and bioactivity
 - natural vs. synthetic materials
- Examples of TE constructs
 - how do we tailor materials for specific purposes?


Module overview: lab

Day 1: design

Day 2: seed cultures

Day 3: viability assay


Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

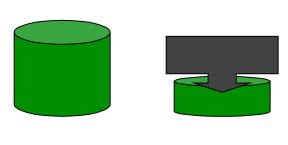
Overall learning goals:

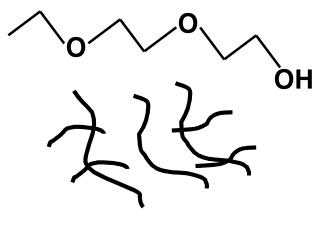
- Extend experience with mammalian cell culture.
- Gain conceptual familiarity and practical experience carrying out and analyzing phenotypic assays.

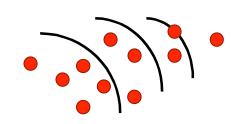
Module 3 overview: assessments

- Essay on standards in TE
 - draft due D4, final due D6
 - learning goals: engage in a modern discussion on a meta-scientific issue

- Presentation of novel research idea
 - final presentation D8
 - learning goals: investigate literature independently, exercise scientific creativity, design experiments to address a specific question/problem


Properties of biomaterials


OH


- Physical/mechanical
 - strength (tensile or compressive)
 - elasticity
 - architecture (e.g., pore size)
- Chemical
 - degradability
 - water content
 - toxicity
- Biological
 - motifs that cells recognize
 - release of biological components

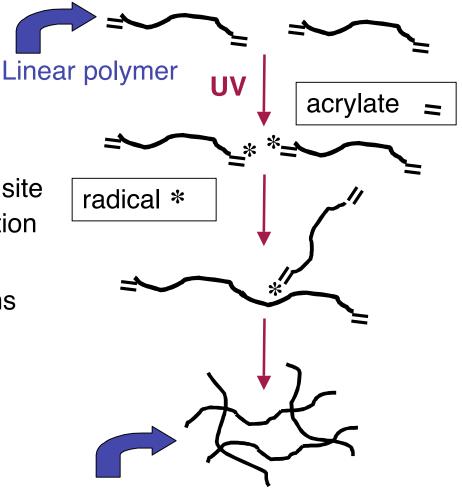
OH

Lifetime

The right material for the job

- Metals
 - types: Ti, Co, Mg alloys
 - pros: mechanically robust (E=10's of GPa)
 - applications: orthopedics, dentistry
- Ceramics
 - types: Al₂O₃, Ca-phosphates, sulfates
 - pros: strength, attachment to bone
 - applications: orthopedics, dentistry
- Polymers
 - diverse, tunable properties
 - applications: primarily soft tissues

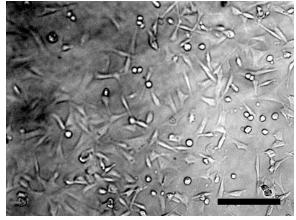
General: B. Ratner, ed. *Biomaterials Science*, 1996. Image: Porter et al., *Biomaterials* **25**:3303 (2004). Metal hip implant



http://www.weisshospital.com/jo int-university/hip/metal.html

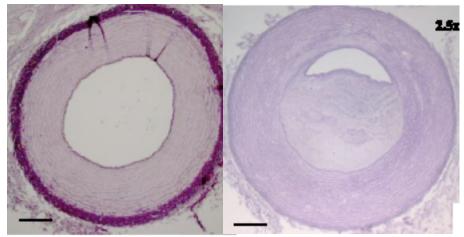
Synthesis and use of hydrogels

- Linear polymer:
 - bifunctional monomers covalently bound together
- Network polymer:
 - multi-functional polymers covalently attached at same site
 - example: radical polymerization
- Network structure
 - covalently cross-linked chains
 - water-swollen (if hydrophilic)
- Advantages
 - mimic tissue water content, elasticity, diffusivity
 - form under gentle conditions



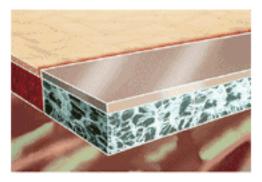
Network polymer

Materials interfacing with cells


- Desire bioactivity
 - cell adhesion
 - cell proliferation/differentiation
- Avoid bio-incompatibility
 - bacterial adhesion
 - clot formation
 - toxicity
 - immunogenicity
- Material properties
 - present adhesion ligands and growth factors
 - manufacture/keep sterile
 - prevent non-specific sticking of blood cells, bacteria

Fibroblasts on polymerpeptide gels (Stachowiak).

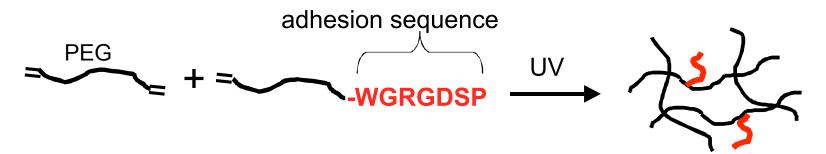
Normal artery


Occluded artery

Zavan et al., FASEB J online preview (2008).

Natural vs. synthetic materials

- Natural pros/cons
 Natural examples: collagen, alginate
 - built-in bioactivity
 - poor mechanical strength
 - immunogenicity (xenologous sources)
 - lot-to-lot variation, unpredictable



Synthetic examples: silicone rubber, PEG

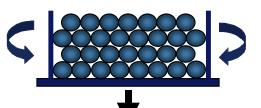
- Synthetic pros/cons
 - biocompatibility may be difficult to predict, must be tested
 - mechanical and chemical properties readily altered
 - minimal lot-to-lot variation
- Synthetic advantages: tuneable and reproducible

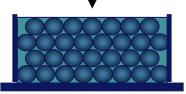
Example: bioactive photopolymers

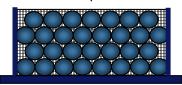
- PEG is poly(ethylene glycol), a bio-inert polymer
- PEG acrylates can be photopolymerized to hydrogel
 - safe for patient
 - temporal and spatial control
 - efficient (wrt energy, conversion)
- Covalent modification with peptides
 - degradability: e.g., collagenase-sensitive APGL
 - adhesion: RGD (general), VAPG (smooth muscle), etc.

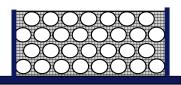
West JL & Hubbell JA, Macromolecules 32:341 (1999)

Gobin AS & West, J Biomed Mater Res 67:255 (2003)


laysanbio.com


H₂CH₂O)nCH₂O


Example: pore-forming strategies


 How to get pore interconnectivity without sacrificing mechanical properties? Colloidal crystal templating

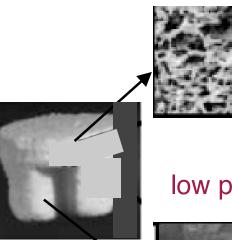
Stachowiak et al., Adv Mat 17:399 (2005), Stachowiak & Irvine, unpublished data

Example: cytokine delivery

- VEGF delivery for angiogenesis, D. Mooney lab
- PLGA = poly(lactic-co-glycolic) acid
- Delivery methods
 - direct mixing of VEGF with hydrophobic PLGA
 - direct mixing with PLGA/alginate mixture
 - release from alginate beads w/in PLGA scaffold
- Results
 - incorporation efficiency: 74% with alginate, else 27%
 - mechanical properties: unchanged
 - protein stability: >80% activity
 - release predictability: similar, ~ 2 weeks long

Peters et al., *J Biomed Mater Res* **60**:668 (2002) Sheridan et al., *J Cont Rel* **64**:91 (2000) +VEGF

Control


Peters et al. 12

Example: cartilage-bone composite

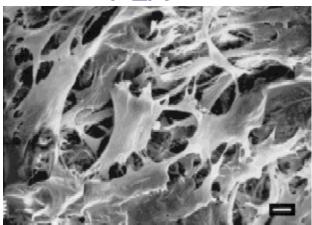
- 3D-printing (3DP) method, L. Griffith lab:
 - powdered polymer preparation
 - solvent addition by nozzle (or heat) to fuse polymer in precise patterns, layer-by-layer
- PLA/PGA scaffold by 3DP
 - top = cartilage-mimic: high porosity
 - bottom = bone-mimic: low porosity
- 3DP-like methods for hydrogels (e.g., Bhatia lab)
 - *light* rather than solvent or heat for polymerization
- Limitations of 3DP method
 - large feature size (~100 um), for now...

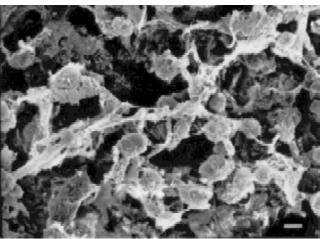
Chondrocytes preferentially attach to top! ----

Sherwood et al., Biomaterials 23:4739 (2002)

low porosity

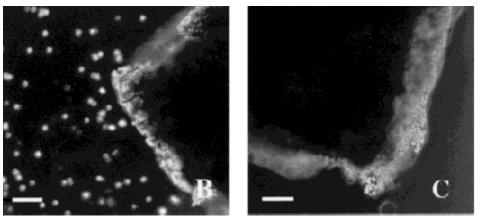
high porosity




Example: multi-polymer composite

- Porous PLA scaffold + marrow cells
- Cells loaded in medium
 - elongated morphology
- Cells loaded in alginate
 - round morphology
 - improved cell retention
 - somewhat enhanced chondrogenesis

PLA



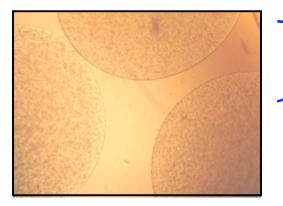
PLA+alginate

PLA

PLA+alginate

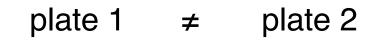
Caterson et al., J Biomed Mater Res 57:394 (2001)

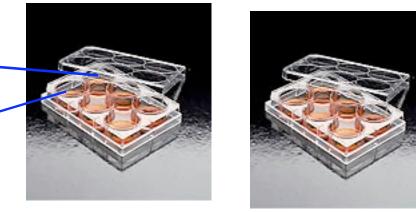
Lecture 2: conclusions


- A wide variety of biomaterials can be used in TE.
- Cell-material interactions can be positive, negative, or neutral (cf. bioactivity, biocompatibility, cytotoxicity).
- Optimization of TE constructs for a given purpose may involve trade-offs (e.g., increased porosity for nutrient diffusion vs. sufficient mechanical strength).
- Hydrogels are useful for soft tissue engineering, due to their similarity to tissue and ease of modification.

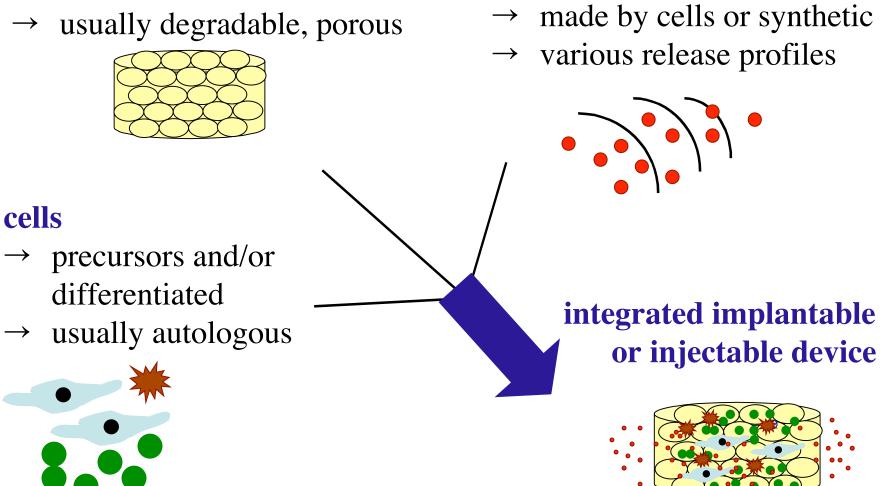
Next time... standards in tissue engineering and other scientific communities.

Module overview: week 1


Days 1+2: design and seed cultures


- 2D culture: plastic surface
 - prepare in duplicate
 - design maintenance plan
- 3D culture: alginate beads
 - prepare in duplicate wells
 - vary one parameter

flask 1 = flask 2



What designs did you choose?

soluble factors

17

scaffold/matrix

