M3D4: TEM

05/04/2016

overall approach, TEM images, elemental map (spectrum), charge/discharge plot, capacity, class-wide data analysis

Only 3 days left ?!#?

- Visit BE Communication Lab once
- M3 mini-report (5%)
 - due Friday, May 6th at 10pm
 - extra OH Friday, 6pm 10pm in 16-220 (pizza & subs)
 - 2-3 pages, no abstract, no method's section, combined results and discussion
 - figures:
- M3 research proposal (20%)
 - feedback on your M3D4 homework on May 5th
 - extra OH Sunday, May 8th, 11am 5pm in 56-302
 - slides due Wednesday, May 11th at 1pm
 - bring one print-out of your slides to 16-336
- Quiz on M3D5
- Blog(s)
 - due Saturday, May 14th at 11am

Module 3: biomaterials engineering How does gold size/quantity affect battery capacity?

TEM: foundations

transmission electron microscopy

1931 Ernst Ruska (1986 Nobel Physics)

- High resolution ~ 0.14 nm
 - de Broglie wavelength $\lambda_{(e-)}$ ~ 5 pm = 0.005 nm
 - compare to $\lambda_{\text{(blue light)}} \sim 400 \text{ nm}$
 - Rayleigh $R_{\text{light}} = 0.61 * \lambda / \text{NA} \sim 400 \text{ nm}$
- Electron source: 200 kV
 - thermionic emission by lanthanum hexaboride
 - vacuum and focusing lenses
- Sample preparation
 - thin and sturdy 10 nm 100 um
 - grid: copper (conductive), formvar (carbon) sturdy
 - biology: not in situ
- Image ≈ sample density
 - e⁻ pass through & are also scattered
 - phosphor screen, YAG-coupled CCD

electrons to photons

TEM: your experiments, your mini-report

What will you learn?

• at low resolution; magnification;

overall structure and density, "yield": how many phage gave rise to nanowires, extent of biomineralization (clumps of naked phage? or not), gold distribution, uniformity, length of nanowires

 at high resolution: magnification; amorphous vs. crystaline Fe(III)PO4, diameter of nanowires, lattice of gold,

from Belcher Lab's Nature Communications 2013, doi:10.1038/ncomms3756

Elemental mapping by EDX

 X-ray emission spectrum is characteristic of unique atomic structure of element

TEM: also with the JEOL 2010 instrument...

- ➤ What will you learn?
- EDX: energy-dispersive X-ray spectroscopy analysis
 - atomic composition of heavier elements in material (> Na¹¹)
 - X-ray emission spectrum is characteristic of unique atomic structure of element
 - expected: Fe, P, O, Au, (Cu)
 - contamination: Na left? N, S (small elements, so buried in low-energy noise)

Today in lab

• TEM in 13-1012

1:35pm: red/purple teams

2:15pm: orange

– 2:55pm: blue/pink

How do TEM images relate to AuNP size / number ? (see M3D1 Discussion page for details)

- Use your time wisely in 56-322:
 - M3 research proposal
 - M3 mini-report (outline)
 - Blog