Cell viability in TE constructs; Cartilage structure/function

Module 3, Lecture 4

20.109 Spring 2008

Dr. Agi Stachowiak

Topics for Lecture 4

- Review of Module 3 so far
- Cell viability: influence and measurement
- Overview of Module 3 week 3
- A closer look at cartilage
 - background on collagens and proteoglycans
 - how cartilage structure influences function

Module progress: week 2

- Day 3: viability/cytotoxicity testing
- Practical matters
 - focusing takes practice
 - too low cell concentration
- Most groups found
 - low cell recovery, especially in 3D
 - mostly live cells in 2D samples
 - 3D samples more variable
- How can we explain these results?
- How can we improve the assay?
- Day 3: morphology observations
 - what did you see in brightfield?

W/F Green group

Factors affecting cell viability

- What factors affect viability in a TE construct?
- Cell level
 - density: competition for nutrients, O₂
 - interactions (+ or -) between different cell types
- Cytokine level
 - may promote viability and/or proliferation
 - may promote apoptosis
- Materials level
 - permeability of material (to nutrients, O_2)
 - pore size, percent porosity
 - toxicity of material or its degradation products

Nutrient use in 3D constructs

- Parameters affecting diffusion
 - size of construct (R)
 - cell density (ρ)
 - diffusivity (D)
 - bulk concentration $[O_2]_{bulk}$
- In simple cases, boundary conditions can be used to get analytical solution

- diffusion profiles tend to correspond with viability profiles
- Solution *in vitro*: dynamic/perfusion culture
- Solution *in vivo*: promote angiogenesis quickly

Modeling cell viability in TE constructs

- J.C.Y. Dunn, et al. *Tissue Eng* **12**:705 (2006)
- Porous PLGA scaffolds
- Seeded cells in every other
 (A) or in each (B) layer
- Observed after 10 days
- Model
 - diffusion, O2 use, and cell growth
 - quasi-steady state
 - no depletion in fluid
- Results
 - A has improved cell uniformity
 - cell growth matches O₂ tension
 - claim for predictive capability

Modeling diffusion in a defined porosity

- S. Shanbhag et al. *Biomaterials* 26:5581 (2006)
- Diffusion in colloidal crystal templated scaffolds
 - geometrically defined model
 - Brownian dynamics (time evolution)
 - Monte Carlo simulations (particle moves, Boltzmann weighting)
- Results
 - D_{eff} = 0.3 D_o = upper-bound
 - decreases with size of inter-pores
 - with particle size (O₂ vs. protein)
 - with further confinement of particles by cells, or utilization by cells

Kotov lab

Cell death: apoptosis and necrosis

- Apoptosis
 - programmed cell death
 - role in development and immunity
 - process: cell condensation and fragmentation
 - misregulated apoptosis implicated in disease
- Necrosis
 - response to trauma
 - process: cells burst and release contents
 - necrotic cells promote inflammation
- Morphology or biochemical assays can distinguish apoptotic and necrotic cells

S. Elmore *Toxicol Pathol* **35**:495 (2007)

Module overview: lab

Day 1: design

Day 2: seed cultures

Day 3: viability assay

Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

Day 8: your research ideas! 9

Day 4: RNA isolation

1. Collect cells lyse cells in buffer <u>homogenize</u> over column

2. Isolate total RNA

on silica-gel columns that bind RNA > 200bp using buffers, ethanol precipitation enriched for mRNA due to size exclusion

www.qiagen.com

Working with RNA requires extremely clean technique. Why?

RNases are pervasive, e.g., on your hands

Day 4: RT-PCR

- RT = reverse transcriptase
 what does this enzyme do?
- Unique primer design needs
 - how to isolate transcript but not genomic DNA?
- RT and PCR can be done in one reaction or two
 - enzyme de/activation by temperature
 - which enzymes when?
- What kinds of controls are desired?

Revisiting cartilage tissue

Avascular, highly water-swollen, heterogeneous tissue. ¹³

Collagen structure

- Collagen primary structure:
 - Gly-X-Y repeats
 - high proline, hydroxyproline content
- Collagen tertiary structure: triple helix
 - Gly contributes flexibility
 - Hyp contributes hydrogen-bonding
- Collagen quaternary structure: fibrils
 - true for many types, including I and II
 - cross-links via lysine and hydroxylysine
 - periodic banding structure observed

Image made using *Protein Explorer* (PDB ID: 1bkv)

E. Vuorio & B. de Crombrugghe Annu Rev Biochem 59:837 (1990)

Collagen types in cartilage

- Collagen types vary with respect to
 - location: II in cartilage, vitreous humor; I in skin, bone, vitals, etc.
 - homo- (II) or hetero- (I) trimeric helices
 - supramolecular structure formation
 - glycoslyation
- Collagen composition in cartilage
 - Type II (fibrils) covalently linked to IX and XI
 - exact roles of IX and XI unknown
 - IX may form inter-fibrillar cross-links
 - XI may modulate collagen II fibril diameter
 - mutations to IX, XI, II cause disease
 - Types III, VI, X, XII, and XIV also present
- Little collagen turnover in adult cartilage

Proteoglycan structure

- Proteins with GAG side chains
 - many negatively charged groups COO⁻ SO₃⁻
- Most common PG in cartilage is aggrecan
 - aggrecans polymerize via hyaluronin (HA)
 - GAG is primarily chondroitin sulfate (CS)
 - monomer > 1M, aggregates > 100M Da

Aggrecan monomer

R.V. lozzo *Annu Rev Biochem* **67**:609 (1998)

Aggrecan aggregate

C.B & W. Knudson *Cell & Dev Bio* **12**:69 (2001)

Chondroitin sulfate (public domain image)

16

Cartilage structure and function

- Composition of cartilage
 - CN is 50-75% and PG is 15-30% of dry weight
 - water: 60-80%
 - cells: 5-10% by volume
- Requirements of a joint
 - load transfer (bone/bone, bone/muscle)
 - flexibility, lubrication
- Role of PG
 - high compressive strength due to osmotic swelling: water is pumped out during compression
 - low permeability, friction coefficient reduces wear and tear
- Role of CN
 - high tensile strength (~GPa)
 - contain swelling forces of PG

V.C. Mow, A. Ratcliffe, and S.LY. Woo, eds. *Biomechanics of Diarthrodial Joints* (Vol. I) Springer-Verlag New York Inc. 1990

Lecture 4: conclusions

- Cell viability in TE constructs is affected by factors at the cell, materials, and cytokine level.
- Modeling is one useful tool to study the effects of nutrient diffusion on cell viability.
- RT-PCR is a technique for studying gene expression, with special considerations beyond PCR.
- The structure of the cartilage extracellular matrix promotes its function in joints.

Next time: gene and protein assays, *in vitro* and *in vivo* models for cartilage TE