
System Engineering

20.109(F09) M2D5 lecture 10.29.09

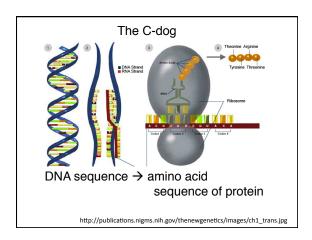
One more acronym: GWAS

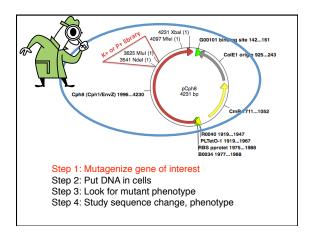
Height = 'model trait' simple to measure and relatively constant •in 2007, comparison made of 5000 genomes •GWAS have revealed >40 loci involved in height

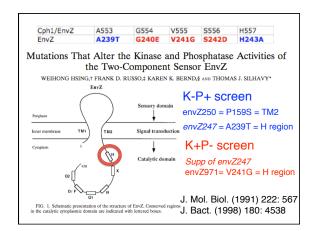
Editorial

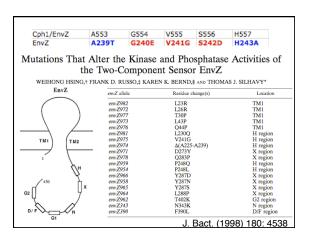
Molecular Systems Biology **5** Article number: 273 <u>doi:</u>10.1038/msb.2009.32 Published online: 19 May 2009 **Citation:** Molecular Systems Biology **5:273**

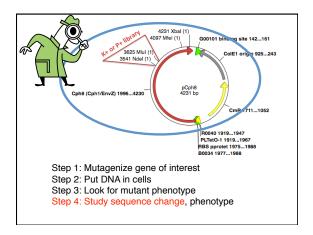
Personal phenotypes to go with personal genomes

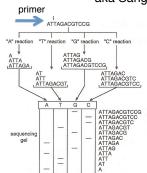

Michael Snyder 1,2 , Sherman Weissman 3 & Mark Gerstein 2,4,5


"the phenotyping of large numbers of individuals might well prove to be more expensive, complex and difficult to implement than the genomic sequencing."


What to phenotype?


 */ height, blood pressure, medical history...
 behavioral (anxiety? Risk taking?)
 cognative (intelligence?)


Standards for collection? macroscopic V% molecular

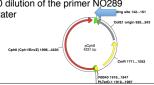


Dideoxy Sequencing Method aka Sanger Method

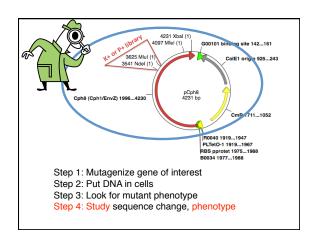
dNTP: can be extended by DNA polymerase

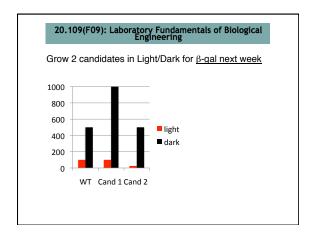
ddNTP: chain terminating!

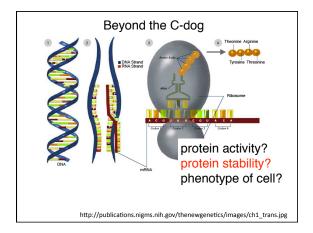
Dideoxy Sequencing Method aka Sanger Method


Elongation Reactions: Template Primer DNA polymerase dNTPs (limiting) αP^{32} -dATP

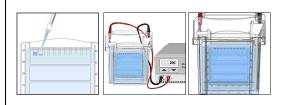
4 Termination Reactions: dNTPs (not limiting) ddNTPs (either ddG, ddA, ddT or ddC)


20.109(F09): Laboratory Fundamentals of Biological Engineering


Sequencing K+ or P+ candidates

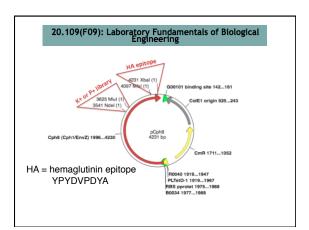

- 1. Miniprep DNA as you did in Module 1 (Soln I, Soln II, Soln III, EtOH, wash, dry)
- 2. Resuspend pellets in 40 ul of water
- 3. For sequencing, mix:
 - 2 ul plasmid DNA
 - 6.4 ul of a 1:100 dilution of the primer NO289
 - 15.6 ul sterile water


20.109(F09): Laboratory Fundamentals of Biological Engineering Also check your DNA by digest Provide 10 ul of each Teaching faculty will cut with A= Nde B= Mlu to run on agarose gel and post With "stuffer" frag expect: ______ With library frag expect: _____


Part 1: SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Loading dye has glycerol, SDS, reducing agent Samples boiled before loading

Part 1: SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)


http://www.bme.gatech.edu/vcl/SDS_PAGE/Background/Introduction.htm

Part 2: Transfer for Western Gel Electrophoresis Transfer Membrane Western Analysis Next week: probe membrane with an antibody http://www.genscript.com/product_001/western_application/grp_id/60065/op/detail/ Uvrag_Antibody_Analysis.html

20.109(F09): Laboratory Fundamentals of Biological Engineering

In lab you will:

- Measure OD600 of 1:10 of
- bacterial photography strain, Candidate 1, Candidate 2
- Harvest 4 OD
 - e.g. if 0.5 OD, harvest 8 ml of 1:10 or 0.8 ml of undiluted
- Isolate protein with lysis kit (enzymatic lysis of cells, spin out debris)
- Mix supernatant with loading dye
- Boil
- · Load for SDS-PAGE along with markers, + control lysate

