- Announcements
- Quiz
- Reporter plasmids
- Lipofection
- Luc and mouse expt'l scheme
- Workflow (Mod 2 Day 5)
- Later... optional stats lecture

Announcements

- iGEM reminder:
 - Info session Mar 31 (4:30-5:15 pm in 56-614)
 - Apps due Apr 3
- Handout re: previous homework
- Lab care: plug in laptops; delete jobs on nonresponsive printer
- Next 2 weeks: 3 labs, 1 analysis session

 Mod2 draft report due on Mod3D1

Reporter plasmid utility

- Mod 1 fusion protein
- Fusion mRNA: gene of interest (GOI) + luciferase
- Easy assay for GOI knockdown
- Why target reporter?

Figure from Promega website

Lipofection

- DNA carrier is similar to the cell membrane
- Efficient transfection (can be >95%)

Figure 6 - Outline of transfection procedure for Lipofectamine™ 2000 Reagent

Figure from Invitrogen website

Today's experiment(s)

Experiment and controls for Luc siRNAS. All wells on this plate also receive pLuc, the luciferase plasmid

M2D5 Workflow

First, sign up for a mouse gene

Transfection

<u>Luminescence assay practice + stats</u>

Statistics Review: Basics

- Need-to-know concepts: standard deviation,
 mean, sample size n ≠ degrees of freedom DOF
- Normal (Gaussian) distribution

Confidence intervals (CI) Principle

- Sample problem, x = 60
- 95 % CI: "I'm 95% sure that the true mean" $\mu = x \pm 3 = 60 \pm 3 = 57 63$ (shorthand, not exactly true)
- 90% CI: μ = x ± a where a <3 a>3 a=3 ?

- Consider betting example
- What about n?

Calculating Confidence Intervals (CI)

$$\mu = \overline{x} \pm \frac{t \, S}{\sqrt{n}}$$

- t is tabulated by DOF vs CI%
 - -DOF = n 1
- In Excel, us TINV function
 - Input p-value = (100-CI)/100

Introduction to t-test

- Every statistical test
 - Has
 - Asks
 - Requires
- Some t-test assumptions

Question

Calculating t-test Significance

$$t_{calc} = \frac{\overline{x}_1 - \overline{x}_2}{s} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$
DOF =

- If $t_{calc} > t_{table}$ difference is significant
- In Excel, us TTEST function
- Excel returns p-value \rightarrow confidence level
- 1-tailed vs. 2-tailed test

Assignment Today

- Get Renilla and firefly luminescence ratios: your own and 2 other groups, 3 samples each
- Calculate 95% CI for all three means
- Plot means on bar graph with CI error bars
- Try t-test to compare each pair of means
 - In Excel, and using a table if you have time
 - Note: for multiple comparisons, ANOVA is better; to compare many pairs of means need correction