Overview of Module 3, Part I

Module 3, Lecture 6

20.109 Spring 2008

Dr. Agi Stachowiak

Topics for Lecture 6

- First, a presentation from Atissa Banuazizi
- Review of big picture:
 - brief module 3 overview
 - cartilage tissue engineering concepts
- What does each day of module 3 contribute? (start today, finish next time)

Overall goals of Module 3

- Design experiment to study effects of local environment on cell de-differentiation
 - <u>cell</u>: primary chondrocytes, *in vitro* culture
 - <u>local environment</u>: material properties, cell density, culture medium composition
 - effects: viability, morphology, collagen II:I ratio
- Grander purpose: discovering factors that maintain chondrocyte phenotype has utility for cartilage tissue engineering
 - conditions for ex vivo cell expansion
 - conditions for bulk cartilage production

Therapies for damaged tissue

- · All tissues have limited regeneration
 - e.g., skin: shallow vs. deep cuts
- Replace with tissue graft
 - donor tissue: limited supply, immune response
 - autologous tissue: donor site damage
- Replace with permanent synthetic substitute (not strictly speaking TE)
 - inflammatory response (chronic)
 - mis-match with natural tissue properties
 - multiple replacements/surgeries
- A new strategy: promote regeneration of ~native tissue = tissue engineering

[Public domain image, Wikimedia Commons]

Potential components for cartilage TE

scaffold/matrix

- \rightarrow usually degradable, porous
- \rightarrow hydrogel (e.g., alginate)

cells

- \rightarrow stem cells, or
- \rightarrow chondrocytes

soluble factors

 \rightarrow TGF, BMP, others

Roles of components in cartilage TE

- Cells
 - contribute to tissue reconstruction (secrete matrix)
- Cytokines
 - stimulate chondrocyte production of fresh matrix
 - simulate stem cell differentiation to chondrocytes
 - attract stem cells to wound site (chemokines)
- Scaffold
 - retain cells and cytokines in needed location
 - provide mechanical support and structure for new tissue
- Any component may be engineered!
 - cells: genetically engineered to express a needed protein
 - cytokine proteins: engineered to have longer half-lives
 - scaffold: engineered to have specific chemical, mechanical, and <u>biological</u> properties that mimic cartilage

e.g., cell-adhesive peptide sequences

Cartilage structure and growth

- Cartilage structure
 - chondrocytes make collagen (CN), proteoglycans (PG)
 - CN forms covalently cross-linked fibers
 - PG promote influx of water/ions

- Natural cartilage growth
 - very slow turnover of collagen in absence of damage
 - even if damaged, little new extracellular matrix forms
 - atypical wound healing partly because avascular

Cartilage replacement

- Specific requirements for replacement
 - sustain compressive loads (done by PG, water)
 - lubricate joint (done by PG, synovial fluid)
 - sustain tensile stresses (done by collagen)
- Ideal replacement has collagen/proteoglycan balance of native tissue
 - option 1: promote native tissue regeneration *in vivo*
 - option 2: grow native tissue-like construct in vitro, implant it
 - either option may involve cells and/or scaffold and/or cytokines

R. Langer & J.P. Vacanti, Science **260**:920 (1993)

T. Nagai et al., *Tissue* Eng 14 (2008)

What can we learn from culture models?

- What cell/cytokine/scaffold/culture combinations stimulate or sustain the chondrocyte phenotype?
- Knowledge can feed into multiple kinds of therapies:

Cell transplantation therapy

1. Biopsy: a few chondrocytes

- **Cartilage replacement therapy**
- 1. Put together cells, scaffold, cytokines

Conditions for *ex vivo* expansion???

2. Inject many cells into patient

Conditions for cartilage production???

2. Grow cartilagelike tissue *in vitro*

3. Grow fresh tissue *in vivo*

3. Directly implant into patient

... and many other potential alternatives! ⁹