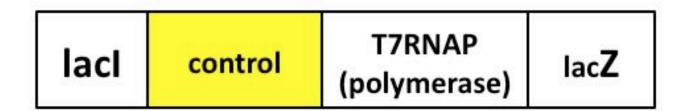

- Announcements
- Quiz
- Pre-lab Lecture
  - Genetic control elements
  - Sequencing recap
  - Writing a figure caption
  - Today in Lab (Mod 1 Day 5)

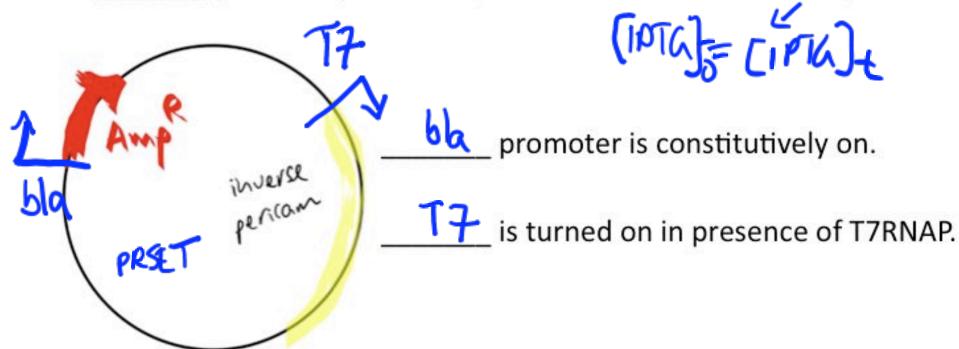
#### **Announcements**

- No quiz next time (full day)!
- Methods HW general comments:
  - Cite resources: Nagai and Watcut website
  - Give concentrations, not volumes (when possible)
  - Compositions available in "Reagent List" (Part 4) on each lab protocol




#### lac operon




that binds to <u>control</u> avea turning it <u>OFF</u>.

In turn, if lactose binds to the rep. protein, it is made to the turning on expression of 2, y, A.

#### Induction of a chosen protein



TRAP gene is expressed in presence of lactose or analogue.



## BL21(DE3) bacterial strain

DE3: bacteriophage (virus) used to integrate

pLysS: protein that produces <u>ysozyme</u>, which binds to <u>TARNAP</u>, reducing <u>"leaky" expression</u>

Retained by <u>chloro mplenico</u> selection.

#### Sequencing reactions

A'ZC" C" T"

Dideoxy method: no 3' OH → can't elongate Run 4 rxns: (d)dT, dA, dG, dC and 3 others

| Reactions | dd A     | Gel different ther. |     |
|-----------|----------|---------------------|-----|
| TAAATT    | TAAATT   | ddT                 | ddA |
| AT*       | A*       | <del>-</del>        |     |
| ATT*      | ATTTA*   |                     | =   |
| ATTT*     | ATTTAA*  |                     |     |
|           | ATTTAAA* | $\equiv$            |     |

<sup>\* =</sup> radioactive or fluorescent label

# Figures: Style and Scope

- Title: concise, informative > gives overall result/goal.
  often symilar to Results sub-headings.
- Caption: give context for result, from big to small.
   Introduce what we are looking at.
   Include just enough Methods to understand results.

  - Define all elements (eq. , DNA lodder)
  - Cover primarily facts (results and/or expectations), limiting complex interpretations for Discussion.
- · Aesthetics simplicity, clarity -> at-a-glorice labeling

#### Figures: Example

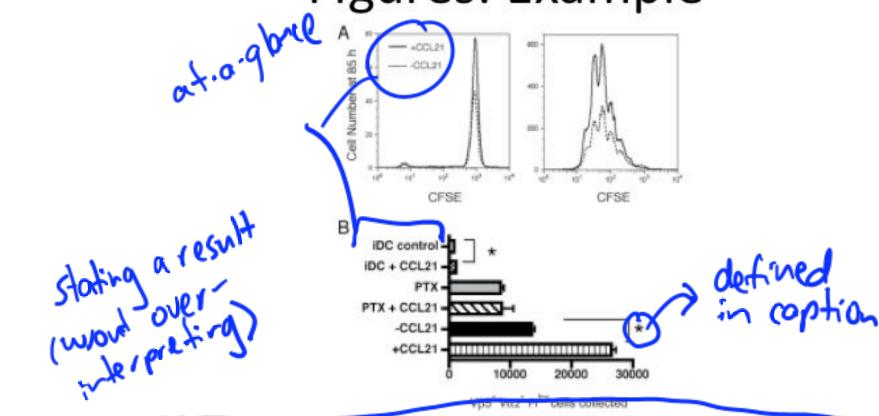



Figure 3 CCL21 impacts naïve T cell proliferation under conditions of rare Ag-specific T DC encounters. Co-cultures comprising 9% OVA-specific OT-II CD4 T cells, 81% C57B1/6 CD4 T cells, 5% OVA-mDC and 5% iDC with/without CCL2 I were analyzed by flow cytometry at 85 h. (A) Sample CFSE histograms are shown for control (left, iDC only) and experimental (right, with OVA-mDC) conditions. (B) OTII cell recovery for all conditions is shown. Ave ± std. dev. for 3 wells per condition. [\* indicates bracketed conditions statistically different (p < 0.05)] (A-B) are from 1 representative of 5 experiments.

## Figure Captions: Practice

#### Fig. N functional title descriptive caption

Agarose gel title ideas:

helonalysis to verify (and measure) fragments after SD-mutagenesis \* label a few bards in ladder

Overview sentence topics:

introduce idea of SDM to IPC

Supporting detail topics:

 expected and observed bondsizes

 Methods to include or not: almost none

Today in Lab: Workflow Check OD until mid-log (0.6 ml Samples!) -IPTG control: ice, eventually spin down 2-3 hours Spin to check pellet colour Grow rest O/N Measure post-growth OD Pour liquid on top, re-pellet Teaching faculty will pellet Analysis: gel, sequencing

#### Today in Lab: Samples

- Start with four DE3 samples carrying plasmid
  - -WT
  - S101L
  - X#Z candidates 1 and 2
- After gel and sequencing analysis, pick just one X#Z to continue working with
- End of day, "hand in" 6 pellets, or (3 pellets, 3 cultures, and 3 eppendorfs) to teaching faculty